Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  4099603

A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48°C high temperature at seedling stage.
Tuesday, 2013/04/23 | 06:43:10

 

J Hered. 2013 Mar; 104(2):287-94.

 

Wei H, Liu J, Wang Y, Huang N, Zhang X, Wang L, Zhang J, Tu J, Zhong X.

 

Zhejiang University

 

Abstract

 

In an earlier greenhouse screening, we identified a local indica cultivar HT54 tolerant to high temperature at both seedling and grain-filling stages. In this study, we develop an optimized procedure for fine assessment of this heat tolerance. The results indicated that HT54 seedlings could tolerate high temperature up to 48 °C for 79h. The genetic analysis of F(1) and F(2) offspring derived from the cross between HT54 and HT13, a heat-sensitive breeding line, reveals that the heat tolerance of HT54 was controlled by a dominant major locus, which has been designated as OsHTAS (Oryza sativa heat tolerance at seedling stage). This locus was mapped on rice chromosome 9 within an interval of 420kb between markers of InDel5 and RM7364. The determined candidate ZFP gene has been confirmed to be cosegregated with a single nucleotide polymorphism (SNP) developed PCR-restriction fragment length polymorphism (RFLP) marker RBsp1407 in its promoter region. Another heat tolerance-associated SNP was identified in the first intron of its 5'-untranslated region. The existence of these SNPs thereby indicated that the OsHTAS locus contains at least two alleles. We named the one from HT54 as OsHTAS ( a ) and the one from HT13 as OsHTAS ( b ). Further dynamic expression analysis demonstrated that OsHTAS ( a ) was actively responsive to 45°C high temperature stress compared with the OsHTAS ( b ) allele.

 

Back      Print      View: 2946

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD