Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  13
 Total visitors :  7450949

A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq
Monday, 2019/02/18 | 08:18:08

Minjeong Park, Joung-Ho Lee, Koeun Han, Siyoung Jang, Jiwoong Han, Jung-Hyun Lim, Ji-Won Jung, Byoung-Cheorl KangDescription: Email author

Theoretical and Applied Genetics; February 2019, Volume 132, Issue 2, pp 515–529

Key message

A major QTL and candidate genes controlling capsaicinoid content in the pericarp were identified by QTL-seq and RNA-seq in Capsicum chinense.

Abstract

Capsaicinoid biosynthesis was previously thought to be restricted to the placental tissue; however, the recent discovery of their biosynthesis in the pericarp provides new opportunities to increase the capsaicinoid content in pepper fruits. Currently, the genetic mechanisms regulating capsaicinoid biosynthesis in the pericarp remain unknown. Here, we performed quantitative trait loci (QTL) mapping and RNA sequencing (RNA-seq) to reveal the genes controlling capsaicinoid biosynthesis in the pericarp. A whole-genome sequencing-based QTL-seq strategy was employed, identifying a major QTL on chromosome 6. To validate the QTL on chromosome 6, we performed traditional QTL mapping using the same population in QTL-seq with an additional biparental population. A total of 15 QTLs for capsaicinoid content distributed on chromosomes 3, 6, and 11 were newly identified. Among these QTLs, the genetic loci on the lower arm of chromosome 6 were commonly detected in the two mapping populations, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. Our RNA-seq analysis identified candidate genes within the common QTL that were differentially expressed in the pungent and non-pungent pericarp tissues. Our results are expected to contribute to the elucidation of the regulation of capsaicinoid biosynthesis. We also demonstrated that a combination of QTL mapping and RNA-seq is helpful for refining the candidate genes of a complicated trait of interest.

 

See https://link.springer.com/article/10.1007/s00122-018-3238-8

Back      Print      View: 282

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD