Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  17
 Total visitors :  4640364

A minor QTL, SG3, encoding an R2R3-MYB protein, negatively controls grain length in rice
Friday, 2020/08/07 | 08:50:22

Qiuping Li, Li Lu, Haiyang Liu, Xufeng Bai, Xin Zhou, Bi Wu, Mengqi Yuan, Lin Yang & Yongzhong Xing 

Theoretical and Applied Genetics August 2020; volume 133: 2387–2399


Key message


SG3 , an R2R3 MYB protein coding gene that tightly linked to a major QTL GS3 , negatively regulates grain length while dependent on the status of GS3 in rice.




It is often very difficult to isolate a minor QTL that is closely linked to a major QTL in rice. In this study, we focused on the isolation of a minor grain length QTL, small grain 3 (SG3), which is closely linked to the major QTL grain size 3 (GS3). The genetic effect of SG3 on grain length was dependent on GS3 status. Its genetic effect was larger in the presence of nonfunctional sg3 than functional SG3. A large number of near-isogenic F2 plants in which GS3 was fixed with nonfunctional alleles were developed to clone SG3. A gene encoding an R2R3 MYB domain transcriptional regulator was identified as the candidate gene for SG3SG3 overexpression and knockdown plants showed shortened and elongated grains, respectively, which demonstrated that SG3 acts as a negative regulator of grain length. SG3 was preferentially expressed in panicles after flowering, and SG3 acted as a transcription activator. Comparative sequencing analysis identified a 12-bp insertion in the third exon of NYZ that led to a frameshift and resulted in a premature stop codon. The insertion/deletion was associated with grain length in the presence of functional GS3 in the indica subspecies. SG3 and GS3 were frequently in coupling phase in indica rice, making them good targets for the breeding of cultivars with short or long grains. The isolation of the SG3 MYB gene provides new gene resource and contributes to the regulatory network of grain length in rice.


See https://link.springer.com/article/10.1007/s00122-020-03606-z

Back      Print      View: 44

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD