Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7452590

Artificial intelligence and farmer knowledge boost smallholder maize yields
Monday, 2019/10/28 | 08:06:35

by CIAT Comunicaciones | Oct 16, 2019

 

Data-driven agriculture can boost smallholder production threatened by variable weather and climate change, but scientists need to work with farmers and governments. A decade of data collection and collaboration in Colombia shows what success looks like

 

 Farmers in Colombia’s northern maize-growing region of Córdoba had seen it all: too much rain one year, a searing drought another. In collaboration with a the government, a national growers association and researchers at the International Center for Tropical Agriculture (CIAT), they helped build and implement big-data tools that successfully increased yields in spite of the challenges presented by extreme weather and climate change.

 

The study, published in September in Global Food Security, shows how machine learning –  when applied to data from multiple sources, including, critically, farmers – can help make farming more efficient and productive even amid climate uncertainty. This can best be achieved when the scientists, producers and farmers organizations collaborate and work together, the researchers conclude.

 

Collected over a period of almost 10 years, Jimenez and colleagues analyzed the data and verified developed guidelines for increased production. Some farmers immediately followed the guidelines, while others waited until the recommendations were verified in field trials. Farmers that adopted the full suite of machine-generated guidelines saw their yields increase from an average of 3.5 tons per hectare to more than 6 tons per hectare – more than 40 percent. This is an excellent yield for rainfed maize in the region.

 

Not only did farmers obtained higher yields, but the guidelines substantially reduced fertilizer costs, and also provided advice on how to reduce risks related to variation in the weather patterns, including reducing the negative impacts of heavy rainfall.

 

Researchers from Colombia’s National Cereals and Legumes Federation (FENALCE) co-authored the study, which is part of a Colombian government program aimed at providing farmers with options to manage both weather variability and climate change.

 

Year by year, maize yields vary by as much as 39% due to variation in weather patterns. Small farmers in the past had to rely on their own knowledge of their crops and accept blanket recommendations often developed by researchers far removed from their own milieu. Now, by combining farmers’ knowledge and analysis of what happens on their farms with modern data sources of information on weather, soils and crop response to variables, farmers can better shield their crops against climate variability. They can also improve yields and reliably keep them higher.

 

In Córdoba, FENALCE, which compiles information on maize plantations, harvests, yields and costs, set up a web-based platform to collect and maintain data from individual farms. Local experts uploaded information on soils after visiting farms at various stages of the crop development, while IDEAM, Colombia’s weather agency, supplied weather information from six stations in the region. This allowed researchers to match daily weather station information with individual fields and the various stages of the growing season.

 

The researchers used machine learning algorithms and expert analysis to measure the impact of different weather, soil and farming practices on yields. For example, they noticed that improving soil drainage to reduce runoff will likely reduce yields where or when rainfall is lower, whereas doing the same in areas with a lot of rain will boost yields. This showed advice on crops needs to be site-specific. This contrasts with the blanket recommendations that were the only ones available before this the study.

 

The study highlighted management as the main cause of low yields. The research shows that by working with farmers and improving crop management, it is possible to increase maize production and food security and improve livelihoods, without large investments.

 

Human learning, too

 

Initially, CIAT and FENALCE designed a smartphone application for farmers to record soil and other data in the field but corn growers did not adopt the app. Although the web-based platform was used to compile the information, researchers and technical assistants had to visit the farms to help the farmers collect the data. This presents a problem for scaling up this type of exercise, and projects that follow this approach will need to address it.

 

Nevertheless, researchers are convinced that there are opportunities for increased data collection by smallholders, both by directly working with farmers and through technology.

 

“Much of the hardware and software for the future collection of cat may well come when the private sector becomes involved sustainable system for capturing, analysing and distributing information,” said Jimenez.

 

Future projects could incorporate apps already developed and tested for use by farmers. Furthermore, data collection by a whole array of technologies ranging from satellites, drones and low-cost sensors deployed in fields, and combine harvesters that accurately record grain yield at a micro-scale are all becoming realities in the developing world.

 

“In the future we can envisage every field being carefully characterized and monitored, turning the landscape into a whole series of experiments that provide data which machine learning can interpret to help famers manage their crops better,” said Cock.

 

https://blog.ciat.cgiar.org/artificial-intelligence-and-farmer-knowledge-boost-smallholder-maize-yields/

Back      Print      View: 239

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use

 

Designed & Powered by WEBSO CO.,LTD