Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  11
 Total visitors :  4972153

Bacterial Community Members Increase Bacillus subtilis Maintenance on the Roots of Arabidopsis thaliana
Saturday, 2021/01/16 | 08:03:20

Noam Eckshtain-Levi, Susanna Leigh Harris, Reizo Quilat Roscios, and Elizabeth Anne Shank

APS Publications; Published Online:20 Oct 2020https://doi.org/10.1094/PBIOMES-02-20-0019-R

Abstract

Plant-growth-promoting bacteria (PGPB) are used to improve plant health and promote crop production. However, because some PGPB (including Bacillus subtilis) do not maintain substantial colonization on plant roots over time, it is unclear how effective PGPB are throughout the plant growing cycle. A better understanding of the dynamics of plant root community assembly is needed to develop and harness the potential of PGPB. Although B. subtilis is often a member of the root microbiome, it does not efficiently monoassociate with plant roots. We hypothesized that B. subtilis may require other primary colonizers to efficiently associate with plant roots. We utilized a previously designed hydroponic system to add bacteria to Arabidopsis thaliana roots and monitor their attachment over time. We inoculated seedlings with B. subtilis and individual bacterial isolates from the native A. thaliana root microbiome either alone or together. We then measured how the coinoculum affected the ability of B. subtilis to colonize and maintain on A. thaliana roots. We screened 96 fully genome-sequenced strains and identified five bacterial strains that were able to significantly improve the maintenance of B. subtilis. Three of these rhizobacteria also increased the maintenance of two strains of B. amyloliquefaciens commonly used in commercially available bioadditives. These results not only illustrate the utility of this model system to address questions about plant–microbe interactions and how other bacteria affect the ability of PGPB to maintain their relationships with plant roots but also may help inform future agricultural interventions to increase crop yields.

 

See: https://apsjournals.apsnet.org/doi/10.1094/PBIOMES-02-20-0019-R

 

Figure 4: A, Distributions of Bacillus subtilis on the lower regions of plant roots following colonization (top) and maintenance (bottom) when inoculated either alone or with the indicated strains. Fluorescent cells were false colored yellow in both the DIC-fluorescent image overlays and the fluorescent images. Images from each section were collected from at least two technical replicates of three independent biological replicates of these experiments. Bar = 50 µm. B, Plant root attachment of B. subtilis following colonization (0 days) and maintenance (1 and 3 days) is increased by cocolonization with either ES981, ES1063, or ES1084. Differences in B. subtilis CFU per seedling when coinoculated with another strain are reported as log-fold changes compared with the average B. subtilis CFU per seedling of three replicates in the same biological experiment. Error bars = standard error of the mean; *, **, and *** indicate P < 0.05, 0.01, and 0.001, respectively.

Back      Print      View: 32

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD