Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  4094186

Bidirectional promoter based CRISPR-Cas9 systems for plant genome editing
Friday, 2019/09/06 | 08:33:34

Qiurong RenZhaohui Zhong, Yan Wang, Qi You, Qian Li, Mingzhu Yuan, Yao He, Caiyan Qi, Xu TangXuelian ZhengTao ZhangYiping Qi and Yong Zhang

Front. Plant Sci. | doi: 10.3389/fpls.2019.01173; Received: 20 Feb 2019; Accepted: 27 Aug 2019.

 

 

 

Figure: A bidirectional promoter system (BiP) was developed for genome editing, which allows expression of Cas9 and single guide RNA (sgRNA) in opposite directions. This was developed by experts from the University of Electronic Science and Technology of China, Yangzhou University, and the University of Maryland.

 

CRISPR-Cas systems can be expressed in multiple ways, with different capabilities regarding tissue-specific expression, efficiency, and expression levels. Thus far, three expression strategies have been demonstrated in plants: mixed dual promoter systems, dual Pol II promoter systems, and single transcript unit (STU) systems. We explored a fourth strategy to express CRISPR-Cas9 in the model and crop plant, rice, where a bidirectional promoter (BiP) is used to express Cas9 and single guide RNA (sgRNA) in opposite directions. We first tested an engineered BiP system based on double-mini 35S promoter and an Arabidopsis enhancer, which resulted in 20.7% and 52.9% genome editing efficiencies at two target sites in T0 stable transgenic rice plants. We further improved the BiP system drastically by using a rice endogenous BiP, OsBiP1. The endogenous BiP expression system had higher expression strength and led to 75.9%-93.3% genome editing efficiencies in rice T0 generation, when the sgRNAs were processed by either tRNA or Csy4. We provided a proof-of-concept study of applying BiP systems for expressing two-component CRISPR-Cas9 genome editing reagents in rice. Our work could promoter future research and adoption of BiP systems for CRISPR-Cas based genome engineering in plants.

 

See https://www.frontiersin.org/articles/10.3389/fpls.2019.01173/abstract


Back      Print      View: 47

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD