Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  6
 Total visitors :  5448969

BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus
Wednesday, 2021/09/22 | 07:59:48

Jie LiuLixia ZhuBenqi WangHuadong WangImran khanShuqin ZhangJing WenChaozhi MaCheng DaiJinxing TuJinxiong ShenBin Yi & Tingdong Fu

Theoretical and Applied Genetics September 2021; vol. 134:3051–3067

Key message

The mutations BnA1.CER4 and BnC1.CER4 produce disordered wax crystals types and alter the composition of epidermal wax, causing increased cuticular permeability and sclerotium resistance.


The aerial surfaces of land plants are coated with a cuticle, comprised of cutin and wax, which is a hydrophobic barrier for preventing uncontrolled water loss and environmental damage. However, the mechanisms by which cuticle components are formed are still unknown in Brassica napus L. and were therefore assessed here. BnA1.CER4 and BnC1.CER4, encoding fatty acyl-coenzyme A reductases localizing to the endoplasmic reticulum and highly expressed in leaves, were identified and functionally characterized. Expression of BnA1.CER4 and BnC1.CER4 cDNA in yeast (Saccharomyces cerevisiae) induced the accumulation of primary alcohols with chain lengths of 26 carbons. The mutant line Nilla glossy2 exhibited reduced wax crystal types, and wax composition analysis showed that the levels of branched primary alcohols were decreased, whereas those of the other branched components were increased. Further analysis showed that the mutant had reduced water retention but enhanced resistance to Sclerotinia sclerotiorum. Collectively, our study reports that BnA1.CER4 and BnC1.CER4 are fatty acyl-coenzyme A reductase genes in B. napus with a preference for branched substrates that participate in the biosynthesis of anteiso-primary alcohols.


See: https://link.springer.com/article/10.1007/s00122-021-03879-y


Figure: Brassica napus.

Back      Print      View: 39

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD