Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  7438428

Breeding Common Bean for Resistance to Common Blight: A Review
Monday, 2015/05/25 | 08:21:56

Shree P. Singh and Phillip N. Miklas

CROP SCIENCE May 2015 Vol. 55 No. 3, p. 971-984

Abstract

 

Common blight [caused by Xanthomonas campestris pv. phaseoli Smith (Dye)] is a major bacterial disease causing >40% seed yield and quality losses in common bean (Phaseolus vulgaris L.) worldwide. Use of resistant cultivars is crucial for its effective, economical, and environment friendly integrated management and control. Common blight resistant germplasm are found in the primary, secondary, and tertiary gene pools of the common bean. Substantial progress has been made in understanding the pathogenic variation, germplasm screening methods, identification of resistant germplasm, genetics of resistance, identifying and mapping molecular markers linked with resistance quantitative trait loci (QTL), introgressing resistance from the secondary and tertiary gene pools, transferring resistance from the Middle American common bean landraces to Andean cultivars and germplasm lines, and pyramiding or combining resistance from diverse germplasm sources into common bean. Backcross, pedigree, gamete, and recurrent selection methods or their modifications singularly or in combination have been used to introgress and pyramid resistance. Also, molecular markers with or without direct disease screening have been used for breeding for resistance. However, Andean and Middle American common bean cultivars with high levels of combined resistance to less-aggressive and aggressive bacterial strains in all aerial plant parts are not available. We will review progress achieved in breeding for resistance, briefly describe problems faced, and discuss strategies for integrated genetic improvement for common blight resistance for cultivar development.

 

See: https://www.crops.org/publications/cs/abstracts/55/3/971

 

Back      Print      View: 802

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD