Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  5
 Total visitors :  5188204

CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato
Monday, 2020/10/05 | 08:23:04

Lun Liu, Jialong Zhang, Jiayi Xu, Yafei Li, Luqin Guo, Zhirong Wang, Xichun Zhang, Bing Zhao, Yang-Dong Guo, Na Zhang.

PLANT SCIENCE, Volume 301, December 2020, 110683


The LATERAL ORGAN BOUNDARIES DOMAIN (LBD)-containing genes are plant-specific genes that play important roles in lateral organ development. In this study, we identified LBD40 (Solyc02g085910), which belongs to subfamily II of the LBD family of genes in tomato. LBD40 was highly expressed in roots and fruit. LBD40 expression was significantly induced by PEG and salt. Moreover, SlLBD40 expression was induced by methyl jasmonate treatment, while SlLBD40 expression could not be induced in the jasmonic acid-insensitive1 (jai1) mutant or MYC2-silenced plants, in which jasmonic acid (JA) signaling was disrupted. These findings demonstrate that SlLBD40 expression was dependent on JA signaling and that it might be downstream of SlMYC2, which is the master transcription factor in the JA signal transduction pathway. Overexpressing and CRISPR/Cas9 mediated knockout transgenic tomato plants were generated to explore SlLBD40 function. The drought tolerance test showed that two SlLBD40 knockout lines wilted slightly, while SlLBD40 overexpressing plants suffered severe wilting. The statistical water loss rate and midday leaf water potential also confirmed that knockout of SlLBD40 improved the water-holding ability of tomato under drought conditions. Taken together, our study demonstrates that SlLBD40, involved in JA signaling, was a negative regulator of drought tolerance and that knockout of SlLBD40 enhanced drought tolerance in tomato. This study also provides a novel function of SlLBD40, which belongs to subfamily II of LBD genes.


See: https://www.sciencedirect.com/science/article/abs/pii/S0168945220302892#!

Back      Print      View: 99

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD