Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  2
 Total visitors :  4337771

Cassava mosaic disease: a review of a threat to cassava production in Zambia
Sunday, 2020/02/23 | 07:11:08

Chikoti PCMulenga RMTembo MSseruwagi P.

J. Plant Pathol. 2019;101(3):467-477. doi: 10.1007/s42161-019-00255-0. Epub 2019 Feb 12.


Cassava (Manihot esculenta Crantz) is one of the most important root staple crops in Zambia. An estimated 30% of Zambians, over 4 million people, consume cassava as part of their daily diet. Cassava is mostly grown by subsistence farmers on fields of less than 1 ha. Cultivation of cassava is hampered by several biotic constraints, of which cassava mosaic disease (CMD) is currently the most important factor limiting cassava production in Zambia. CMD occurs in all the cassava-growing provinces and accounts for 50% to 70% of yield losses countrywide. Strategies to counter CMD were initiated in the early 1990s and included the release of CMD-resistant cassava cultivars. However, efforts to control CMD are limited because few growers plant these cultivars. More recently, to address the CMD problem, regular disease monitoring and diagnostic capabilities have been strengthened, and there is increased support for screening breeders materials. CMD is a rising threat to cassava production in Zambia. This review of CMD research on disease surveillance, CMD spread, yield losses, awareness campaigns and control options in Zambia over the past 25 years informs future control efforts and management strategies.


See https://www.ncbi.nlm.nih.gov/pubmed/31983872


Figure1: Symptoms of cassava mosaic disease (CMD). a A healthy cassava plant (left) and a plant infected with CMD (right); plants are same cultivar, Manyopola. b A healthy cassava leaf. c A cassava leaf showing severe CMD symptoms including leaf curling and chlorosis. d A cassava plant (cultivar Katobamputa) with a single infection of African cassava mosaic virus (ACMV) and e a plant of the same cultivar with a dual infection of ACMV and East African cassava mosaic virus (EACMV).

Back      Print      View: 49

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD