Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  5
 Total visitors :  6505708

Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model
Tuesday, 2022/09/20 | 08:26:05

Ghazanfar Latif , Sherif E AbdelhamidRoxane Elias MallouhyJaafar AlghazoZafar Abbas Kazimi

Plants (Basel) ; 2022 Aug 28;11(17):2230.  doi: 10.3390/plants11172230.


Rice is considered one the most important plants globally because it is a source of food for over half the world's population. Like other plants, rice is susceptible to diseases that may affect the quantity and quality of produce. It sometimes results in anywhere between 20-40% crop loss production. Early detection of these diseases can positively affect the harvest, and thus farmers would have to be knowledgeable about the various disease and how to identify them visually. Even then, it is an impossible task for farmers to survey the vast farmlands on a daily basis. Even if this is possible, it becomes a costly task that will, in turn, increases the price of rice for consumers. Machine learning algorithms fitted to drone technology combined with the Internet of Things (IoT) can offer a solution to this problem. In this paper, we propose a Deep Convolutional Neural Network (DCNN) transfer learning-based approach for the accurate detection and classification of rice leaf disease. The modified proposed approach includes a modified VGG19-based transfer learning method. The proposed modified system can accurately detect and diagnose six distinct classes: healthy, narrow brown spot, leaf scald, leaf blast, brown spot, and bacterial leaf blight. The highest average accuracy is 96.08% using the non-normalized augmented dataset. The corresponding precision, recall, specificity, and F1-score were 0.9620, 0.9617, 0.9921, and 0.9616, respectively. The proposed modified approach achieved significantly better results compared with similar approaches using the same dataset or similar-size datasets reported in the extant literature.


See https://pubmed.ncbi.nlm.nih.gov/36079612/


Back      Print      View: 89

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD