Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  7
 Total visitors :  4573678

Developmental plasticity shapes social traits and selection in a facultatively eusocial bee
Sunday, 2020/06/21 | 06:28:42

Karen M. Kapheim,  Beryl M. Jones,  Hailin Pan, Cai Li,  Brock A. Harpur,  Clement F. Kent,  Amro Zayed,  Panagiotis Ioannidis, Robert M. Waterhouse, Callum Kingwell,  Eckart Stolle,  Arián Avalos, Guojie Zhang, W. Owen McMillan, and William T. Wcislo


PNAS June 16, 2020 117 (24) 13615-13625 - ECOLOGY


Developmental processes are an important source of phenotypic variation, but the extent to which this variation contributes to evolutionary change is unknown. We used integrative genomic analyses to explore the relationship between developmental and social plasticity in a bee species that can adopt either a social or solitary lifestyle. We find genes regulating this social flexibility also regulate development, and positive selection on these genes is influenced by their function during development. This suggests that developmental plasticity may influence the evolution of sociality. Our additional finding of genetic variants linked to differences in social behavior sheds light on how phenotypic variation derived from development may become encoded into the genome, and thus contribute to evolutionary change.


Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.


See https://www.pnas.org/content/117/24/13615


Figure 2: Correlation of logFC across life stages, sexes, and social phenotypes. Differential expression of genes from each pair of conditions was compared to all other pairs to identify contrasts with significantly similar gene-expression changes. Circle size and color represent correlation strength (Spearman’s ρ); positive or negative correlation indicates concordance or discordance in direction of differential expression, depending on order in which the dyad is listed (e.g., QvW vs. WvR in red indicates a similar set of genes is up-regulated in Q and R compared with W); boxes highlight expression changes during development correlated with expression differences in abdominal (orange) or brain (green) tissue among social types; empty cells indicate correlations were not statistically significant (Benjamini–Hochberg adjusted P < 0.001); correlation and P values are in Dataset S5.

Back      Print      View: 50

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD