Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  2
 Total visitors :  4441793

Discovery of Genes Could Help Reduce Fertilizer Pollution in Waterways
Saturday, 2019/09/14 | 07:17:39


Figure: BTI researchers used Brachypodium distachyon (left) and Medicago truncatula (right) to discover the roles of two genes in root colonization by symbiotic fungi. Photo Source: BTI



One of the many problems of agriculture is over-fertilization of agricultural fields. Excess phosphorus from fertilized fields finds its way into nearby rivers and lakes, resulting in increased aquatic plant growth. When this happens, oxygen levels in the water plunge, leading to fish die-offs and other harmful effects.


Researchers from Boyce Thompson Institute (BTI) have uncovered the function of a pair of plant genes that could help improve phosphate capture and potentially reduce the environmental harm associated with fertilization. The discovery comes from the research of William H. Crocker Professor at BTI and Cornell University adjunct professor Maria Harrison on plants' symbiotic relationships with arbuscular mycorrhizal (AM) fungi.


To discover how plants control the amount of fungal colonization, the researchers looked at genes that encode short proteins called CLE peptides in the plants Medicago truncatula and Brachypodium distachyon. They found two CLE genes that are key modulators of AM fungal symbiosis. One of the genes, CLE53, reduces colonization rates once the roots have been colonized. Another gene, CLE33, reduces colonization rates when there is plenty of phosphate available to the plant.


The CLE peptides act through a receptor protein called SUNN, and two CLE peptides modulate the plant's synthesis of a compound called strigolactone. Plant roots exude strigolactone into the soil, stimulating AM fungi to grow and colonize the root. Once the roots are colonized or there is plenty of phosphate, the CLE genes suppress the synthesis of strigolactone, thus reducing any further colonization by the fungi.


For more details, read the article on the BTI website.

Back      Print      View: 83

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use
Designed & Powered by WEBSO CO.,LTD