Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  15
 Total visitors :  7450706

Effective identification of CRISPR/Cas9-induced and naturally occurred mutations in rice using a multiplex ligation-dependent probe amplification-based method
Tuesday, 2020/08/04 | 08:09:23

Sukumar BiswasRong LiJun HongXiangxiang ZhaoZheng YuanDabing Zhang & Jianxin Shi

Theoretical and Applied Genetics, August 2020;  133:2323–2334

 

Key message

 

A multiplex ligation-dependent probe amplification (MLPA)-based method was developed and successfully utilized to efficiently detect both CRISPR/Cas9-induced and naturally occurred mutations in rice.

 

Abstract

 

The site-specific nuclease-based CRISPR/Cas9 system has emerged as one of the most efficient genome editing tools to modify multiple genomic targets simultaneously in various organisms, including plants for both fundamental and applied researches. Screening for both on-target and off-target mutations in CRISPR/Cas9-generated mutants at the early stages is an indispensable step for functional analysis and subsequent application. Various methods have been developed to detect CRISPR/Cas9-induced mutations in plants. Still, very few have focused on the detection of both on- and off-targets simultaneously, let alone the detection of natural mutations. Here, we report a multiplex capable method that allows to detect CRISPR/Cas9 induced on- and off-target mutations as well as naturally occurred mutation based on a multiplex ligation-dependent probe amplification (MLPA) method. We demonstrated that unlike other methods, the modified target-specific MLPA method can accurately identify any INDELs generated naturally or by the CRISPR/Cas9 system and that it can detect natural variation and zygosity of the CRISPR/Cas9-generated mutants in rice as well. Furthermore, its high sensitivity allowed to define INDELs down to 1 bp and substitutions to a single nucleotide. Therefore, this sensitive, reliable, and cheap method would further accelerate functional analysis and marker-assisted breeding in plants, including rice.

 

See https://link.springer.com/article/10.1007/s00122-020-03600-5

Back      Print      View: 243

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD