Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  5391792

Engineering Resistance to Bacterial Blight and Bacterial Leaf Streak in Rice
Monday, 2021/07/26 | 08:35:46

Zhe NiYongqiang CaoXia JinZhuomin FuJianyuan LiXiuyu MoYongqiang HeJiliang TangSheng Huang

Rice (N Y); 2021 Apr 23;14(1):38.  doi: 10.1186/s12284-021-00482-z.




Background: Xanthomonas oryzae (Xo) is one of the important pathogenic bacterial groups affecting rice production. Its pathovars Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight and bacterial leaf streak in rice, respectively. Xo infects host plants by relying mainly on its transcription activator-like effectors (TALEs) that bind to host DNA targets, named effector binding elements (EBEs), and induce the expression of downstream major susceptibility genes. Blocking TALE binding to EBE could increase rice resistance to the corresponding Xo.


Findings: We used CRISPR/Cas9 to edit the EBEs of three major susceptibility genes (OsSWEET11, OsSWEET14 and OsSULTR3;6) in the rice varieties Guihong 1 and Zhonghua 11. Both varieties have a natural one-base mutation in the EBE of another major susceptibility gene (OsSWEET13) which is not induced by the corresponding TALE. Two rice lines GT0105 (from Guihong 1) and ZT0918 (from Zhonghua 11) with target mutations and transgene-free were obtained and showed significantly enhanced resistance to the tested strains of Xoo and Xoc. Furthermore, under simulated field conditions, the morphology and other agronomic traits of GT0105 and ZT0918 were basically the same as those of the wild types.


Conclusions: In this study, we first reported that the engineering rice lines obtained by editing the promoters of susceptibility genes are resistant to Xoo and Xoc, and their original agronomic traits are not affected.


See: https://pubmed.ncbi.nlm.nih.gov/33891171/


Figure 1: CRISPR-mediated editing of the susceptibility genes’ EBEs in rice. a, Schematic presentation of the target sites. The underlined sequences are the target sites. The sequences with black boxes represent the protospacer adjacent motif (PAM). b, Genotypes of the EBEs. Wild type represents the genotypes of Guihong 1 and Zhonghua 11. The sequences underlined in red are TALE binding sites. Deletions are indicated as dashes; the sign −/+ stands for deletion/ insertion; the number represents the number of deletion/insertion bases. The genotypes of OsSWEET11’s EBE in ZT0918 is shown in Supplemental Fig. 2.

Back      Print      View: 51

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD