Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  6
 Total visitors :  4438280

Fine mapping of the qHTB1-1QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line
Sunday, 2020/03/29 | 05:53:20

Zhibin CaoYao LiHuiwu TangBohong ZengXiuying TangQizhang LongXiaofeng WuYaohui CaiLinfeng Yuan & Jianlin Wan

Theoretical and Applied Genetics April 2020; 133:1161–1175


Key message

The qHTB1-1 QTL, controlling heat tolerance at the booting stage in rice, was fine mapped to a 47.1 kb region containing eight candidate genes. Two positional candidate genes showed significant changes in expression levels under heat stress.


High-temperature stress at the booting stage has the potential to significantly limit rice production. An interspecific advanced backcrossed population between the Oryza sativa L. cultivar R53 and the wild Oryza rufipogon Griff accession HHT4 was used as the source material to develop a set of chromosome segment introgression lines to elucidate the genetic mechanism of the qHTB1-1 QTL in heat tolerance. A single-chromosome-segment introgression line, IL01-15, was used to develop secondary populations for the mapping of qHTB1-1 on chromosome 1 for heat tolerance at the booting stage. Using the BC5F2, BC5F3, and BC5F4 populations, we first confirmed qHTB1-1 and validated the phenotypic effect. The qHTB1-1 QTL explained 13.1%, 16.9%, and 17.8% of the phenotypic variance observed in the BC5F2, BC5F3, and BC5F4 generations, respectively. Using homozygous recombinants screened from larger BC6F2 and BC6F3 populations, qHTB1-1 was fine mapped within a 47.1 kb region between markers RM11633 and RM11642. Eight putative predicted genes were annotated in the region, and six genes were predicted to encode expressed proteins. The expression patterns of these six genes demonstrated that LOC_Os01g53160 and LOC_Os01g53220 were highly induced by heat stress in IL01-15 compared to R53. Sequence comparison of the gene-coding regions of LOC_Os01g53160 and LOC_Os01g53220 between R53 and IL01-15 revealed one synonymous and two nonsynonymous SNPs in exons, respectively. Our results provide a basis for identifying the genes underlying qHTB1-1 and indicate that markers linked to the qHTB1-1 locus can be used to improve the heat tolerance of rice at the booting stage by marker-assisted selection.


See https://link.springer.com/article/10.1007/s00122-020-03539-7

Back      Print      View: 33

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD