Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  2
 Total visitors :  5912962

First Report of Tomato Yellow Leaf Curl Virus Infecting Upland Cotton (Gossypium hirsutum) in Alabama, USA
Sunday, 2022/05/15 | 07:43:14

Autumn McLaughlinBrianna HeilsnisJenny KoebernickKassie ConnerAlana Lynn Jacobson

 

Plant Disease; 2022 Apr 12.;  doi: 10.1094/PDIS-09-20-2041-PDN.

 Figure: Symptom of Tomato Yellow Leaf Curl

Abstract

Cotton (Gossypium hirsutum L.) is used as a non-host of tomato yellow leaf curl virus (TYLCV) (family Geminiviridae, genus Begomovirus) in many studies (Ghanim and Czosnek 2000; Legarrea et al. 2015; Zeidan and Czosnek 1991), but only one reports methods used to determine host-status (Sinisterra et al. 2005), and there is one contradictory report from China stating cotton is a host of TYLCV (Li et al. 2014). In October 2018, cotton was screened for the presence of begomoviruses in Elmore, Escambia and Macon Counties, AL, where infestations of its whitefly vector (Bemisia tabaci Genn.) occurred in August. DNA was extracted from fully expanded leaves from the upper 1/3 of the canopy using a DNeasy® Plant Mini Kit (QIAGEN, Hilden, Germany) and amplified with primers V324/C889 targeting a 575 bp coat protein fragment of begomoviruses (Brown et al. 2001). Five out of 200 cotton samples tested positive, and sequences recovered from three samples revealed 98-99% identity to TYLCV isolates in NCBI (Accession Nos. MT947801-03); sequences from the other two samples were of low quality and inconclusive. These samples were not available for additional tests, therefore, we proceeded to confirm host status using a monopartite clone of TYLCV-Israel (Reyes et al. 2013) reported in the US (Polston et al. 1999). All experiments were conducted in growth chambers with 16:8 light:dark cycle at 25.0℃ and 50% RH. Cotton seedlings (DeltaPine 1646 B2XF) at the 2-3 true leaf stage and tomatoes (Solanum lycopersicum L., var. 'Florida Lanai') at the 4 true leaf stage were agroinoculated at the stem tissue between the apical meristem and the first node (Reyes et al. 2013). Tomato served as a positive control; tomato and cotton mock inoculated with an empty vector were negative controls. A hole-punch was used to collect 4 leaf discs along midveins of the three, uppermost fully expanded leaves. DNA was extracted 28 days after inoculation as described above. A 390 bp segment of the intergenic region of TYLCV-A was amplified using primers PTYIRc287/PTYIRv21 (Nakhla et al., 1993). PCR results from agroinoculated plants confirmed (2/18) cotton plants, (5/5) tomatoes and (0/10) mock inoculated controls were infected with TYLCV. Whitefly transmission to cotton was confirmed using a leaf-disc bioassay for rapid testing (Czosnek et al. 1993). Bemisia tabaci MEAM-1 reared on eggplant (non-host of TYLCV) were placed on agroinoculated TYLCV-infected tomato/span> plants for a 96-h acquisition access period. Cohorts of 10 viruliferous B. tabaci were aspirated into 30mL cups each containing a 2.5cm healthy cotton leaf disc set in plant agar. After a 48-h inoculation access period, adults and their eggs were removed from the leaf discs. Leaf discs were held another 96-h before they were tested for TYLCV using the methods described above. TYLCV-infection was confirmed in (9/20) cotton leaf discs, demonstrating the viral load delivered by whiteflies was high enough to initiate local infection in cotton. No obvious begomovirus symptoms were observed on cotton plants in the field or laboratory. Field collection of samples was prompted by symptoms attributed to cotton leafroll dwarf virus (Avelar et al. 2017). TYLCV infection of cotton does not appear to be of economic importance. Additional information is needed to determine the frequency of infection in the field, specificity of TYLCV isolate x cotton genotype interactions leading to successful infection, and underlying causes of conflicting host-status reports in previously published studies.

 

See: https://pubmed.ncbi.nlm.nih.gov/35412338/

Back      Print      View: 44

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD