Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  5932842

Functional analysis of molecular interactions in synthetic auxin response circuits
Monday, 2016/10/10 | 08:18:04

Edith Pierre-Jerome, Britney L. Moss, Amy Lanctot, Amber Hageman, and Jennifer L. Nemhauser

Significance

Auxin-regulated transcription plays a role in almost every aspect of plant growth and development. Recent structural studies of domains from auxin-activated transcription factors and auxin-degraded repressors have raised fundamental questions about the protein complexes required for auxin response. Here, we leverage the power of a synthetic yeast system to identify and systematically characterize the simplest auxin response unit in the absence of the potentially confounding influence of other family members and interacting pathways.

Abstract

Auxin-regulated transcription pivots on the interaction between the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor proteins and the AUXIN RESPONSE FACTOR (ARF) transcription factors. Recent structural analyses of ARFs and Aux/IAAs have raised questions about the functional complexes driving auxin transcriptional responses. To parse the nature and significance of ARF–DNA and ARF–Aux/IAA interactions, we analyzed structure-guided variants of synthetic auxin response circuits in the budding yeast Saccharomyces cerevisiae. Our analysis revealed that promoter architecture could specify ARF activity and that ARF19 required dimerization at two distinct domains for full transcriptional activation. In addition, monomeric Aux/IAAs were able to repress ARF activity in both yeast and plants. This systematic, quantitative structure-function analysis identified a minimal complex—comprising a single Aux/IAA repressing a pair of dimerized ARFs—sufficient for auxin-induced transcription.

 

See: http://www.pnas.org/content/113/40/11354.abstract.html?etoc

PNAS October 4 2016; vol.113; no.40: 11354–11359

 

Fig. 2.

ARFs activate as dimers. (A) ARF19 requires an intact PB1 domain for full activity. Activation of the P3(2x)::Venus fluorescent reporter by ARF19 variants in yeast was measured using flow cytometry. The data are shown as median values, with black horizontal bars demarcating 95% confidence intervals around the median. DB, DNA binding; DD, dimerization domain; MR, middle region; PB1, C-terminal interaction domain. See Table S1 for specific residues that were mutated in each domain. The diminished activity of the db1, dd1, and ok ARF19 mutant variants is not due to decreased protein levels (Fig. S2A). (B) PB1 mutations decrease DNA binding by ARF19. A ChIP assay was performed on 4×FLAG-ARF19 WT, double PB1 (ok), and DNA-binding mutant (db1) at the P3(2x) locus. Results from three independent replicates are shown normalized to the enrichment of the wild-type ARF19. Error bars represent SE. Relative activity of FLAG-tagged ARFs was similar to untagged strains (Fig. S2B). (C) Activity of ARF19 single PB1 mutants is rescued by coexpressing mutants with complementary interfaces to allow dimerization in the PB1 domain (D = k + o). The data are shown as median values, with black horizontal bars demarcating 95% confidence intervals around the median.

Back      Print      View: 1472

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD