Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  12
 Total visitors :  7452710

Genetic association of stomatal traits and yield in wheat grown in low rainfall environments
Friday, 2016/07/15 | 07:45:00

Fahimeh Shahinnia, Julien Le Roy, Benjamin Laborde, Beata Sznajder, Priyanka Kalambettu, Saba Mahjourimajd, Joanne Tilbrook and Delphine Fleury

Abstract

Background

In wheat, grain filling is closely related to flag leaf characteristics and function. Stomata are specialized leaf epidermal cells which regulate photosynthetic CO2 uptake and water loss by transpiration. Understanding the mechanisms controlling stomatal size, and their opening under drought, is critical to reduce plant water loss and maintain a high photosynthetic rate which ultimately leads to elevated yield. We applied a leaf imprinting method for rapid and non-destructive phenotyping to explore genetic variation and identify quantitative traits loci (QTL) for stomatal traits in wheat grown under greenhouse and field conditions.

Results

The genetics of stomatal traits on the adaxial surface of the flag leaf was investigated using 146 double haploid lines derived from a cross between two Australian lines of Triticum aestivum, RAC875 and Kukri. The drought tolerant line RAC875 showed numerous small stomata in contrast to Kukri. Significant differences between the lines were observed for stomatal densitity and size related traits. A negative correlation was found between stomatal size and density, reflecting a compensatory relationship between these traits to maintain total pore area per unit leaf surface area. QTL were identified for stomatal traits on chromosomes 1A, 1B, 2B, and 7A under field and controlled conditions. Most importantly some of these loci overlap with QTL on chromosome 7A that control kernel number per spike, normalized difference vegetation index, harvest index and yield in the same population.

Conclusions

In this first study to decifer genetic relationships between wheat stomatal traits and yield in response to water deficit, no significant correlations were observed among yield and stomatal traits under field conditions. However we found some overlaps between QTL for stomatal traits and yield across environments. This suggested that stomatal traits could be an underlying mechanism increasing yield at specific loci and used as a proxy to track a target QTL in recombinant lines. This finding is a step-forward in understanding the function of these loci and identifying candidate genes to accelerate positional cloning of yield QTL in wheat under drought.

 

See: http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0838-9

BMC Plant Biology; 4 July 2016; 6:150 DOI: 10.1186/s12870-016-0838-9

 

Fig. 2

Phenotypic correlations among all the traits. Heat maps illustrating the correlations measured in the RAC875/Kukri DH population grown under a Lameroo and b Roseworthy field-conditions and c drought and d well-watered treatments in the glasshouse. According to colour key, correlation coefficients between r ≤ -0.3 and 0.3 ≤ r are significant at p < 0.01 (**) and p < 0.05 (*)

Back      Print      View: 582

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD