Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  4510917

Genome optimization for improvement of maize breeding
Wednesday, 2020/05/27 | 08:27:00

Shuqin JiangQian ChengJun YanRan Fu & Xiangfeng Wang

Theoretical and Applied Genetics May 2020; 133:1491–1502

Key message

We propose a new model to improve maize breeding that incorporates doubled haploid production, genomic selection, and genome optimization.

Abstract

Breeding 4.0 has been considered the next era of plant breeding. It is clear that the Breeding 4.0 era for maize will feature the integration of multi-disciplinary technologies including genomics and phenomics, gene editing and synthetic biology, and Big Data and artificial intelligence. The breeding approach of passively selecting ideal genotypes from designated genetic pools must soon evolve to virtual design of optimized genomes by pyramiding superior alleles using computational simulation. An optimized genome expressing optimal phenotypes, which may never actually be created, can function as a blueprint for breeding programs to use minimal materials and hybridizations to achieve maximum genetic gain. We propose a new breeding pipeline, “genomic design breeding,” that incorporates doubled haploid production, genomic selection, and genome optimization and is facilitated by different scales of trait predictions and decision-making models. Successful implementation of the proposed model will facilitate the evolution of maize breeding from “art” to “science” and eventually to “intelligence,” in the Breeding 4.0 era.

 

See https://link.springer.com/article/10.1007/s00122-019-03493-z

 

Figure 5: Combining DH breeding, GS, and genome optimization into a pipeline for improvement of maize breeding. The details of the proposed maize breeding pipeline are described in the main text

Back      Print      View: 29

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD