Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7437895

Genome-wide association study reveals significant genomic regions for improving yield, adaptability of rice under dry direct seeded cultivation condition.
Friday, 2019/06/14 | 07:54:26

Subedi SR1,2,3, Sandhu N1,4, Singh VK5, Sinha P6, Kumar S7, Singh SP8, Ghimire SK2, Pandey M2, Yadaw RB3, Varshney RK6, Kumar A9.

BMC Genomics. 2019 Jun 10;20(1):471. doi: 10.1186/s12864-019-5840-9.

 

Abstract

BACKGROUND:

 

Puddled transplanted system of rice cultivation despite having several benefits, is a highly labor, water and energy intensive system. In the face of changing climatic conditions, a successful transition from puddled to dry direct seeded rice (DDSR) cultivation system looks must in future. Genome-wide association study was performed for traits including, roots and nutrient uptake (14 traits), plant-morphological (5 traits), lodging-resistance (4 traits) and yield and yield attributing traits (7 traits) with the aim to identify significant marker-trait associations (MTAs) for traits enhancing rice adaptability to dry direct-seeded rice (DDSR) system.

 

RESULTS:

 

Study identified a total of 37 highly significant MTAs for 20 traits. The false discovery rate (FDR) ranged from 0.264 to 3.69×10- 4, 0.0330 to 1.25×10- 4, and 0.0534 to 4.60×10-6 in 2015WS, 2016DS and combined analysis, respectively. The percent phenotypic variance (PV) explained by SNPs ranged from 9 to 92%. Among the identified significant MTAs, 15 MTAs associated with the traits including nodal root, root hair length, root length density, stem and culm diameter, plant height and grain yield were reported to be located in the proximity of earlier identified candidate gene. The significant positive correlation of grain-yield with seedling establishment traits, root morphological and nutrient-uptake related traits and grain yield attributing traits pointing towards combining target traits to increase rice yield and adaptability under DDSR. Seven promising progenies with better root morphology, nutrient-uptake and higher grain yield were identified that can further be used in genomics assisted breeding for DDSR varietal development.

 

CONCLUSIONS:

 

Once validated, the identified MTAs and the SNPs linked with trait of interest could be of direct use in genomic assisted breeding (GAB) to improve grain yield and adaptability of rice under DDSR.

 

See: https://www.ncbi.nlm.nih.gov/pubmed/31182016

Fig. 2

Phenotype-Phenotype correlation plot of different seedling establishment, root, grain and grain yield contributing traits considering whole population; a in 2015WS. bin 2016DS. c in combined seasons. d different seedling establishment, root, nutrient uptake, grain and grain yield contributing traits considering 60 progenies (30 high yielding and 30 low grain yielding used for nutrient uptake analysis). The blue color indicates the significant positive correlation and red color indicates the significant negative correlation among different traits. RGR1: relative growth rate from 22 to 15 DAS, RGR2: relative growth rate from 29 to 22 DAS, RGR3: relative growth rate from 29 to 22 DAS, NR1: number of nodal roots at 15 DAS, NR2: number of nodal roots at 22 DAS, NR3: number of nodal roots at 29 DAS, RL1: maximum root length (cm) at 15 DAS, RL2: maximum root length (cm) at 22 DAS, RL3: maximum root length (cm) at 29 DAS, RHL: root hair length, RHD: root hair density, LCC: leaf color chart, SPAD: cholorophyll content, FLL: flag leaf length, FLW: flag leaf width, FLA: flag leaf area, FLAngle: Flag leaf Angle, DTFirst: days to first emergence, DTFull: days to full emergence, SD: stem diameter, CD: culm diameter, BS: bending strength (kg cm), BM: bending moment (kg cm2), PHT: plant height (cm), DTF: days to 50% flowering (days), BMF: biomass at 50% flowering (g), VVG: vegetative vigor score, NPT: number of productive tillers per plant, PL: panicle length (cm), NFG/P: number of filled grains/panicle, 1000GW: 1000 grain weight (g), SY: straw yield (kg ha− 1), GY: grain yield (kg ha− 1), N: nitrogen, P: phosphorus, Fe: iron, Zn: zinc

Back      Print      View: 368

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD