Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  1
 Total visitors :  4559636

Identification of a novel genomic region associated with resistance to Fusarium crown rot in wheat
Tuesday, 2020/07/07 | 08:17:38

Jingjing JinShuonan DuanYongzhi QiSuhong YanWei LiBaoyun LiChaojie XieWenchao Zhen & Jun Ma 

Theoretical and Applied Genetics July 2020; vol. 133:2063–2073


Figure: Symptom of Fusarium crown rot in wheat


Key message

Genome-wide association study (GWAS) on 358 Chinese wheat germplasms and validation in a biparental population identified a novel significant genomic region on 5DL for FCR resistance.


Fusarium crown rot (FCR) is a chronic and severe disease in many dryland wheat-producing areas worldwide. In the last few years, the incidence and severity of FCR progressively increased in China, and the disease has currently become a new threat to local wheat crops. Here, we report a genome-wide association study (GWAS) on a set of 358 Chinese germplasms with the wheat 55 K SNP array. A total of 104 SNPs on chromosomes 1BS, 1DS, 2AL, 5AL, 5DS, 5DL, 6BS and 7BL were significantly associated with seedling resistance to FCR in the association panel. Of these SNPs, a novel 13.78 Mb region targeted by five SNPs on chromosome arm 5DL was continually detected in all three trials. The effects of this region on FCR resistance was confirmed in biparental population. qRT-PCR showed that within this 5DL region, several genes encoding TIR-NBS-LRR proteins and proteins related to mycotoxins deoxynivalenol (DON) detoxification increased rapidly in the disease-resistant variety 04 Zhong 36 than the susceptible variety Xinmai 26 after inoculation. Our study provides new insights into gene discovery and creation of new cultivars with desirable alleles for improving FCR resistance in wheat.


See https://link.springer.com/article/10.1007/s00122-020-03577-1



Back      Print      View: 20

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD