Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  16
 Total visitors :  7449992

Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence
Thursday, 2019/09/12 | 08:25:47

Long Wang, Lina Zhao, Xiaohui Zhang, Qijun Zhang, Yanxiao Jia, Guan Wang, Simin Li, Dacheng Tian, Wen-Hsiung Li, and Sihai Yang

PNAS September 10, 2019 116 (37): 18479-18487

Significance

Rice resistance against blast, a devastating fungal disease, is typically mediated by nucleotide-binding site leucine-rich repeat (NLR) proteins. Most previous studies focused on individual NLR genes, but single R genes typically confer no durable resistance owing to their narrow resistance spectrum. In this study, we sequenced the genome of Tetep, a widely used resistance donor, to decipher the molecular basis of its broad-spectrum and durable blast resistance. Large-scale cloning and functional analysis of annotated NLRs uncovered a large number of functional NLR genes and interactive NLR networks in the genome. Moreover, pedigree tracing of elite cultivars indicated the more NLRs inherited from Tetep the better resistance of the cultivar. Various datasets were provided for facilitating breeding for new resistant cultivars.

Abstract

Tetep is a rice cultivar known for broad-spectrum resistance to blast, a devastating fungal disease. The molecular basis for its broad-spectrum resistance is still poorly understood. Is it because Tetep has many more NLR genes than other cultivars? Or does Tetep possess multiple major NLR genes that can individually confer broad-spectrum resistance to blast? Moreover, are there many interacting NLR pairs in the Tetep genome? We sequenced its genome, obtained a high-quality assembly, and annotated 455 nucleotide-binding site leucine-rich repeat (NLR) genes. We cloned and tested 219 NLR genes as transgenes in 2 susceptible cultivars using 5 to 12 diversified pathogen strains; in many cases, fewer than 12 strains were successfully cultured for testing. Ninety cloned NLRs showed resistance to 1 or more pathogen strains and each strain was recognized by multiple NLRs. However, few NLRs showed resistance to >6 strains, so multiple NLRs are apparently required for Tetep’s broad-spectrum resistance to blast. This was further supported by the pedigree analyses, which suggested a correlation between resistance and the number of Tetep-derived NLRs. In developing a method to identify NLR pairs each of which functions as a unit, we found that >20% of the NLRs in the Tetep and 3 other rice genomes are paired. Finally, we designed an extensive set of molecular markers for rapidly introducing clustered and paired NLRs in the Tetep genome for breeding new resistant cultivars. This study increased our understanding of the genetic basis of broad-spectrum blast resistance in rice.

 

See https://www.pnas.org/content/116/37/18479

Figure 1: Resistance map of Tetep NLR genes. In a whole genome random survey, 219 NLRs (numbered 001 through 219) in the Tetep genome were cloned and tested for resistance against 12 highly diversified blast pathogen strains (from S2007 to LaiXian). Two susceptible rice cultivars, japonica cv. TP309 and Shin2, were used as transformation recipient cultivars. Each tested NLR is colored according to its resistance status, i.e., resistant (R) or susceptible (S), to the given blast strain in either cultivar. NLRs inherited in at least 1 of 5 Tetep-derived cultivars are marked by blue triangles. Paired NLRs are marked by a blue circle (a helper) or a cross (a sensor). A full list of the 219 NLR genes is given in SI Appendix, Table S6.

Back      Print      View: 324

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD