Soichiro Honda, Yumiko Yamazaki, Takumi Mukada, Weiguo Cheng, Masaru Chuba, Yozo Okazaki, Kazuki Saito, Akira Oikawa, Hayato Maruyama, Jun Wasaki, Tadao Wagatsuma, Keitaro Tawaraya
Plants (Basel); 2023 Mar 18; 12(6):1365. doi: 10.3390/plants12061365.
Abstract
Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (-P) and 8 (+P) mg P L-1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under -P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in -P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance.
See https://pubmed.ncbi.nlm.nih.gov/36987053/
(147).png)
Figure 3: Log (−P/+P) of each lipid species in the roots of seven rice cultivars 5 days after transplanting. For each lipid species, different letters indicate significant (p < 0.05) differences among the seven cultivars.
|
[ Other News ]___________________________________________________
|