Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  6318685

Multigene Engineering for Sustainable Biotechnological Production of Saffron`s Active Ingredient
Monday, 2022/09/12 | 08:28:30

Figure: The research team from King Abdullah University of Science and Technology has devised a method to produce saffron's active ingredient from the fruit of an ornamental plant popular in China, Gardenia jasminoides, shown here on the left. On the right is saffron, the world's most expensive spice. Photo Source: KAUST

 

Saffron, the most expensive spice in the world is obtained from the stigma of Crocus sativa flowers. To produce a kilogram of saffron, it takes 150,000–200,000 flowers. Researchers at the King Abdullah University of Science and Technology (KAUST) have found a way to use a common garden plant to produce crocins, saffron's active ingredient, a compound with important applications in the therapeutic and food industry.

 

The golden yellow to the reddish-brown color of saffron comes from crocins, water-soluble pigments derived from carotenoids by a process catalyzed by enzymes known as carotenoid cleavage dioxygenases (CCDs). Crocins have high therapeutic potential, protecting neural cells from degradation. They also have antidepressant, sedative, and antioxidant properties. Crocins are also important in the food industry as natural food colorants. Harvesting and processing hand-picked stigmas of saffron are very labor intensive. Moreover, saffron is only grown in limited areas of the Mediterranean and Asia, and new biotechnological approaches to produce these compounds in large amounts are in great demand.

 

Researchers at KAUST have identified a highly efficient CCD enzyme in the fruits of Gardenia jasminoides, an ornamental plant used in traditional Chinese medicine. G. jasminoides produces the crocin precursor crocetin dialdehyde. The researchers have now established a system for investigating CCD enzymatic activity in plants and developed a multigene engineering approach for sustainable biotechnological production of crocins in plant tissues. Xiongie Zheng, lead author of the study said their biotechnological approach can also be used on crops, such as rice, to develop crocin-rich functional food.

 

Team leader Salim Al-Babili says their study paves the way for efficient biotechnological production of crocins and other high-value compounds derived from carotenoids (apocarotenoids) as pharmaceuticals in green tissues as well as other starch-rich plant organs.

 

For more details, read the article in KAUST Discovery.

See https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=19713

 

Back      Print      View: 54

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use

 

Designed & Powered by WEBSO CO.,LTD