Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  4127114

Mutational Analysis of OsPLDα1 Reveals Its Involvement in Phytic Acid Biosynthesis in Rice Grains
Monday, 2019/10/14 | 09:19:09

Muhammad Saad Shoaib Khan, Rasbin Basnet, Shah Ashadul Islam, Qingyao Shu

J. Agric. Food Chem. September 25, 2019

Abstract

Phospholipids and phytic acid are important phosphorus (P)-containing compounds in rice grains. Phytic acid is considered as a major antinutrient, because the negatively charged phytic acid chelates cations, including essential micronutrients, and decreases their bioavailability to human beings and monogastric animals. To gain an insight into the interplay of these two kinds of phosphorus-containing metabolites, we used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (OsPLDα1) and analyzed the mutational effect on metabolites, including phytic acid in rice grains. Metabolic profiling of two ospldα1 mutants revealed depletion in the phosphatidic acid production and lower accumulation of cytidine diphosphate diacylglycerol and phosphatidylinositol. The mutants also showed significantly reduced phytic acid content as compared to their wild-type parent, and the expression of the key genes involved in the phytic acid biosynthesis was altered in the mutants. These results demonstrate that OsPLDα1 not only plays an important role in phospholipid metabolism but also is involved in phytic acid biosynthesis, most probably through the lipid-dependent pathway, and thus revealed a potential new route to regulate phytic acid biosynthesis in rice.

 

See https://pubs.acs.org/doi/abs/10.1021/acs.jafc.9b05052

Figure 1:

Back      Print      View: 31

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD