Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  5
 Total visitors :  5391981

Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide
Thursday, 2021/07/22 | 08:26:50


Pedro M. Tognetti, Suzanne M. Prober, Selene Báez, Enrique J. Chaneton, Jennifer Firn, Anita C. Risch, Martin Schuetz, Anna K. Simonsen, Laura Yahdjian, Elizabeth T. Borer, Eric W. Seabloom, Carlos Alberto Arnillas, Jonathan D. Bakker, Cynthia S. Brown, Marc W. Cadotte, Maria C. Caldeira, Pedro Daleo, John M. Dwyer, Philip A. Fay, Laureano A. Gherardi, Nicole Hagenah, Yann Hautier, Kimberly J. Komatsu, Rebecca L. McCulley, Jodi N. Price, Rachel J. Standish, Carly J. Stevens, Peter D. Wragg, and Mahesh Sankaran

PNAS July 13, 2021 118 (28) e2023718118


Predicting the effects of anthropogenic nutrient enrichment on plant communities is critical for managing implications for biodiversity and ecosystem services. Plant functional types that fix atmospheric nitrogen (e.g., legumes) may be at particular risk of nutrient-driven global decline, yet global-scale evidence is lacking. Using an experiment in 45 grasslands across six continents, we showed that legume cover, richness, and biomass declined substantially with nitrogen additions. Although legumes benefited from phosphorus, potassium, and other nutrients, these nutrients did not ameliorate nitrogen-induced legume decline. Given global trends in anthropogenic nutrient enrichment, our results indicate the potential for global decline in grassland legumes, with likely consequences for biodiversity, food webs, soil health, and genetic improvement of protein-rich plant species for food production.


Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non–nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


See https://www.pnas.org/content/118/28/e2023718118


Figure 1: Change in legume cover (A), richness (B), and biomass (C) for the third year (top row) and last (third to sixth) year after initiation of the experiment (bottom row). Changes were expressed as response ratios, the natural logarithm of the relative change from initial values (Methods); positive and negative values indicate increases and decreases, respectively. Bars represent means ± SEMs, and dots (•) indicate treatment means that were statistically different from the controls. No response ratio in control plots were statistically different from zero, indicating that controls remained the same on average over time. Note the different y-axis ranges. Cover and richness data were available for 45 sites and biomass data for 26 sites.

Back      Print      View: 58

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD