Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  16
 Total visitors :  7449823

Opposite response of maize ZmCCT to photoperiod due to transposon jumping
Friday, 2021/09/10 | 08:25:47

Shuyang ZhongHangqin LiuYan Li & Zhongwei Lin

Theoretical and Applied Genetics September 2021; vol. 134: 2841–2855

Key message

The new 4.2-kb transposable insertion in the intron of ZmCCT reversely responded relative to the known 5.1-kb transposable insertion to photoperiods between low- and high-latitude regions.

Abstract

Flowering time is a key trait for cereal adaptation that is controlled by a complex genetic background in maize. The effect of multiple alleles from a quantitative trait locus (QTL) on flowering time remains largely unknown. Here, we fine-mapped a major QTL for flowering time on maize chromosome 10 corresponding to ZmCCT, where a new allele with a 4.2-kilobase (kb) transposable insertion was present in the intron. The known allele with a 5.1-kb transposon insertion in the promoter of ZmCCT enhances flowering in high-latitude regions, but has no effect on flowering time in low-latitude regions in comparison with the null allele lacking this insertion. However, our new allele with a 4.2-kb insertion reduced flowering in the low-latitude region, but produced unchanged flowering time in the high-latitude region relative to the 5.1-kb transposable insertion. Transcription analysis revealed that the new allele with 4.2-kb insertion versus the 5.1-kb insertion repressed and unchanged the transcription of ZmCCT in the low- and high-latitude regions, respectively. Thus, the allele with the 4.2-kb transposable insertion showed a completely opposite response to photoperiods between these two regions. Phylogenetic analysis revealed that the 4.2-kb transposable insertion in the two Northern flint corns originated from tropical maize. RNA-seq analysis and dual-luciferase transient expression assays further identified a conserved gene regulation network of ZmCCT between maize and rice, in which ZmCCT directly repressed the transcription of the florigen gene ZCN8 via ZmEhd1. Our results suggest that transposable elements play an important role in maize adaptation.

 

See: https://link.springer.com/article/10.1007/s00122-021-03862-7

Back      Print      View: 168

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD