Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  1
 Total visitors :  4779516

Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.)
Wednesday, 2020/10/07 | 08:39:39

Awadhesh Kumar , Chandrasekhar SahuPuja A PandaMonalisa BiswalRameswar P SahMilan K LalMirza J BaigPadmini SwainLambodar BeheraKrishnendu ChattopadhyaySrigopal Sharma.

 

J Sci Food Agric 2020 Mar 15; 100(4):1598-1607.

Abstract

Background: Phytic acid (PA) is an anti-nutrient present in cereals and pulses. It is known to reduce mineral bioavailability and inhibit starch-digesting α-amylase (which requires calcium for activity) in the human gut. In principle, the greater the amount of PA, the lower is the rate of starch hydrolysis. It is reflected in the lower glycemic index (GI) value of food. People leading sedentary lifestyles and consuming rice as a staple food are likely to develop type 2 diabetes. Hence, this study was planned to understand how PA content of different rice varieties affects the GI.

 

Results: Rice Khira and Mugai which had very low PA (0.30 and 0.36 g kg-1 , respectively) had higher GI values and α-amylase activity, while Nua Dhusara and the pigmented rice Manipuri black rice (MBR) which had high PA (2.13 and 2.98 g kg-1 , respectively) showed low α-amylase activity and GI values. This relationship was statistically significant, though a weak relationship was found for the pigmented rice. Expression levels of MIPSI, IPKI and GBSSI markedly increased in the middle stage of grain development in all of the six genotypes having contrasting PA and GI. Maximum expression of MIPSI and IPKI was observed in Nua Dhusara and MBR (which had high PA) while that of GBSSI was observed in Khira and Mugai (with higher GI) at middle stage showing a negative correlation between PA and GI.

 

Conclusions: The data indicate that high PA content in rice might have an adverse effect on starch digestibility resulting in slower starch digestion in the human gut and consequently low glycemic response. © 2019 Society of Chemical Industry.

 

See: https://pubmed.ncbi.nlm.nih.gov/31773736/

Figure 3: Relationship between PA and mineral (Fe and Zn) bioavailability in six selected rice genotypes. The regression value (R2) and P‐value are shown along with regression equation.

Back      Print      View: 43

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD