Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  16
 Total visitors :  7716503

Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
Saturday, 2015/01/03 | 11:18:34

Hiromasa Shikata, Kousuke Hanada, Tomokazu Ushijima, Moeko Nakashima, Yutaka Suzuki, and Tomonao http://www.kulak.ac.be/facult/wet/biologie/pb/kulakbiocampus/lage%20planten/Arabidopsis%20thaliana%20-%20Zandraket/Arabidopsis_thaliana-zandraket02.jpgMatsushita


Plants adapt to their fluctuating environment by monitoring surrounding light conditions through several photoreceptors, such as phytochrome. It is widely believed that upon absorbing red light, phytochrome induces plant light responses by regulating the transcription of numerous target genes. In this study, we provide clear evidence that phytochrome controls not only transcription, but also alternative splicing in Arabidopsis. We reveal that 6.9% of the annotated genes in the Arabidopsis genome undergo rapid changes in their alternative splicing patterns in a red light- and phytochrome-dependent manner. Our results demonstrate that phytochrome simultaneously regulates two different aspects of gene expression, namely transcription and alternative splicing to mediate light responses in plants.


Plants monitor the ambient light conditions using several informational photoreceptors, including red/far-red light absorbing phytochrome. Phytochrome is widely believed to regulate the transcription of light-responsive genes by modulating the activity of several transcription factors. Here we provide evidence that phytochrome significantly changes alternative splicing (AS) profiles at the genomic level in Arabidopsis, to approximately the same degree as it affects steady-state transcript levels. mRNA sequencing analysis revealed that 1,505 and 1,678 genes underwent changes in their AS and steady-state transcript level profiles, respectively, within 1 h of red light exposure in a phytochrome-dependent manner. Furthermore, we show that splicing factor genes were the main early targets of AS control by phytochrome, whereas transcription factor genes were the primary direct targets of phytochrome-mediated transcriptional regulation. We experimentally validated phytochrome-induced changes in the AS of genes that are involved in RNA splicing, phytochrome signaling, the circadian clock, and photosynthesis. Moreover, we show that phytochrome-induced AS changes of SPA1-RELATED 3, the negative regulator of light signaling, physiologically contributed to promoting photomorphogenesis. Finally, photophysiological experiments demonstrated that phytochrome transduces the signal from its photosensory domain to induce light-dependent AS alterations in the nucleus. Taking these data together, we show that phytochrome directly induces AS cascades in parallel with transcriptional cascades to mediate light responses in Arabidopsis.


See: http://www.pnas.org/content/111/52/18781.abstract.html?etoc

PNAS December 30, 2014 vol. 111 no. 52: 18781–18786


Fig. 2.

Fig. 2. A model depicting the early signaling cascades of phytochrome that regulate genome-wide gene expression in response to red light. Red arrows indicate pathways that are regulated by AS; blue arrows indicate pathways subjected to transcriptional regulation.

Back      Print      View: 1904

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation
  • DOMAINS REARRANGED METHYLTRANSFERASE3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis


Designed & Powered by WEBSO CO.,LTD