Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  4893541

Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela
Friday, 2019/09/20 | 08:23:50

Dong An, Yong Zhou, Changsheng Li, Qiao Xiao, Tao Wang, Yating Zhang, Yongrui Wu, Yubin Li, Dai-Yin Chao, Joachim Messing, and Wenqin Wang

PNAS September 17, 2019 116 (38) 18893-18899


Constant exposure of aquatic plants to freely exchangeable nutrients and pathogenic microbes requires regulation of gene expression different to land plants. However, short-read sequencing platforms fail to provide vital information that comprises genes involved in the response to such a challenge. Here, we applied long-read sequencing to retrieve missing sequences to the duckweed species of Spirodela polyrhiza. Evolution of the genetic network and root morphology show that roots play a function as sea anchors rather than nutrient uptake. Moreover, disease-resistance gene clusters are constitutively active whereas they are silenced by phasiRNA in land plants.


Aquatic plants have to adapt to the environments distinct from where land plants grow. A critical aspect of adaptation is the dynamics of sequence repeats, not resolved in older sequencing platforms due to incomplete and fragmented genome assemblies from short reads. Therefore, we used PacBio long-read sequencing of the Spirodela polyrhiza genome, reaching a 44-fold increase of contiguity with an N50 (a median of contig lengths) of 831 kb and filling 95.4% of gaps left from the previous version. Reconstruction of repeat regions indicates that sequentially nested long terminal repeat (LTR) retrotranspositions occur early in monocot evolution, featured with both prokaryote-like gene-rich regions and eukaryotic repeat islands. Protein-coding genes are reduced to 18,708 gene models supported by 492,435 high-quality full-length PacBio complementary DNA (cDNA) sequences. Different from land plants, the primitive architecture of Spirodela’s adventitious roots and lack of lateral roots and root hairs are consistent with dispensable functions of nutrient absorption. Disease-resistant genes encoding antimicrobial peptides and dirigent proteins are expanded by tandem duplications. Remarkably, disease-resistant genes are not only amplified, but also highly expressed, consistent with low levels of 24-nucleotide (nt) small interfering RNA (siRNA) that silence the immune system of land plants, thereby protecting Spirodela against a wide spectrum of pathogens and pests. The long-read sequence information not only sheds light on plant evolution and adaptation to the environment, but also facilitates applications in bioenergy and phytoremediation.


See https://www.pnas.org/content/116/38/18893

Figure 1: Comparison of genome assembly from short reads and long reads. From outside to inside, the circles represent karyotype (a), sequence gaps (b), GC content (c), full-length LTRs (d), gene density (e), and syntenous connections (f). The metrics are calculated in 1-Mb sliding windows. The right half circle represents genome assembly from long reads (Sp7498V3). The left half circle represents genome assembly from short reads (Sp7498V2). Every blue vertical bar indicates one gap in layer b. There are 270 gaps in Sp7498V3 and 13,459 gaps in Sp7498V2. The inner lines denote the synteny of two versions of genomes. Chr, chromosome.

Back      Print      View: 135

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD