Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  7
 Total visitors :  5520260

Proteome profiling of repeated drought stress reveals genotype-specific responses and memory effects in maize.
Tuesday, 2021/10/26 | 09:07:49

Schulze WX, Altenbuchinger M, He M, Kränzlein M, Zörb C.

Plant Physiol Biochem. 2021 Feb; 159:67-79. doi: 10.1016/j.plaphy.2020.12.009. 


Drought has become a major stress for agricultural productivity in temperate regions, such as central Europe. Thus, information on how crop plants respond to drought is important to develop tolerant hybrids and to ensure yield stability. Posttranscriptional regulation through changed protein abundances is an important mechanism of short-term response to stress events that has not yet been widely exploited in breeding strategies. Here, we investigated the response to repeated drought exposure of a tolerant and a sensitive maize hybrid in order to understand general protein abundance changes induced by singular drought or repeated drought events. In general, drought affected protein abundance of multiple pathways in the plant. We identified starch metabolism, aquaporin abundance, PSII proteins and histones as strongly associated with typical drought-induced phenotypes such as increased membrane leakage, osmolality or effects on stomatal conductance and assimilation rate. In addition, we found a strong effect of drought on nutrient assimilation, especially the sulfur metabolism. In general, pre-experience of mild drought before exposure to a more severe drought resulted in visible adaptations resulting in dampened phenotypes as well as lower magnitude of protein abundance changes.


See: https://pubmed.ncbi.nlm.nih.gov/33341081/  or



Fig. 5. Protein abundance comparison between genotype K and genotype L. Each dot represents a single protein abundance under control conditions (constant water supply) throughout the three harvests. Asterisks indicate proteins and protein clusters significantly different (p < 0.05, pairwise t-test) under control conditions in genotype L compared to genotype K.

Back      Print      View: 41

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD