Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  6
 Total visitors :  4284924

Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility-related genes in neo-tetraploid rice.
Sunday, 2019/07/28 | 08:05:56

Bei XShahid MQWu JChen ZWang LLiu X.

PLoS One. 2019 Apr 5;14(4):e0214953. doi: 10.1371/journal.pone.0214953. eCollection 2019.


Autotetraploid rice is a useful germplasm for polyploid rice breeding, however, low seed setting is the major barrier in commercial utilization of autotetraploid rice. Our research group has developed neo-tetraploid rice lines, which have the characteristics of high fertility and heterosis when crossed with autotetraploid rice. In the present study, re-sequencing and RNA-seq were employed to detect global DNA variations and differentially expressed genes (DEGs) during meiosis stage in three neo-tetraploid rice lines compared to their parents, respectively. Here, a total of 4109881 SNPs and 640592 InDels were detected in neo-tetraploid lines compared to the reference genome, and 1805 specific presence/absence variations (PAVs) were detected in three lines. Approximately 12% and 0.5% of the total SNPs and InDels identified in three lines were located in genic regions, respectively. A total of 28 genes, harboring at least one of the large-effect SNP and/or InDel which affect the integrity of the encoded protein, were identified in the three lines. Together, 324 specific mutation genes, including 52 meiosis-related genes and 8 epigenetics-related genes were detected in neo-tetraploid rice compared to their parents. Of these 324 genes, five meiosis-related and three epigenetics-related genes displayed differential expressions during meiosis stage. Notably, 498 specific transcripts, 48 differentially expressed transposons and 245 differentially expressed ncRNAs were also detected in neo-tetraploid rice. Our results suggested that genomic structural reprogramming, DNA variations and differential expressions of some important meiosis and epigenetics related genes might be associated with high fertility in neo-tetraploid rice.


See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450637/


Figure 1: Morphological characteristics of neo-tetraploid rice lines and their parents.

(A) Plant appearance of neo-tetraploid rice lines and their parents. Left: Plant structure of 96025 (T44), Huaduo 3 (H3) and Jackson-4x (T45), and H3 was developed from T44 and T45. Middle: Plant structure of 96025 (T44), Huaduo 5 (66) and Jackson-4x (T45), and 66 was developed from T44 and T45. Right: Plant structure of 96025 (T44), Huaduo 4 (134) and Jackson-4x (T45), and 134 was developed from T44 and T45. (B): Grains of neo-tetraploid rice lines and their parents.

Back      Print      View: 77

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD