Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  6
 Total visitors :  5113956

Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs
Friday, 2020/06/26 | 08:38:43

A. I. SeyeC. BaulandA. Charcosset & L. Moreau

Theoretical and Applied Genetics June 2020; vol. 133:1995–2010

Key message

Simulations showed that hybrid performances issued from an incomplete factorial between segregating families of two heterotic groups enable to calibrate genomic predictions of hybrid value more efficiently than tester-based designs.


Genomic selection offers new opportunities to revisit hybrid breeding by replacing extensive phenotyping of hybrid combinations by genomic predictions. A key question remains to identify the best design to calibrate genomic prediction models. We proposed to use single-cross hybrids issued from an incomplete factorial design between segregating populations and compared this strategy with a conventional approach based on topcross evaluation. Two multiparental segregating populations of lines, each specific of one heterotic group, were simulated. Hybrids considered as training sets were generated using either (1) a parental line from the opposite group as tester or (2) following an incomplete factorial design. Different specific combining ability (SCA) proportions were simulated by considering different levels of group divergence and dominance effects for the simulated QTL. For the incomplete factorial design, for a same number of hybrids, we considered different numbers of parental lines and different contributions of lines (one to four) to calibration hybrids. We evaluated for different training set sizes prediction accuracies of new hybrids and genetic gains along three generations. At a given training set size, factorial design was as efficient (considering accuracy) as tester design in additive scenarios, but significantly outperformed tester design when SCA was present. The contribution number of each parental line to the incomplete factorial design had a small impact on accuracies. Our simulations confirmed experimental results and showed that calibrating models on hybrids between two multiparental populations is a cost-efficient way to perform genomic predictions in both groups, opening prospects for revisiting reciprocal recurrent selection schemes.


See: https://link.springer.com/article/10.1007/s00122-020-03573-5

Back      Print      View: 110

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD