Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  13
 Total visitors :  7449205

SARS-CoV-2 Uses Neuropilin-1 to Infect Human Cells
Saturday, 2020/10/31 | 06:47:07

Figure: Photo Source: Centers for Disease Control and Prevention Public Health Image Library

 

New research from two separate papers shows that SARS-CoV-2, the virus that causes COVID-19, uses a receptor called neuropilin-1 to efficiently infect human cells. Neuropilin-1 is very abundant in many human tissues including the respiratory tract, blood vessels, and neurons.

 

Unlike other respiratory viruses, SARS-CoV-2 also infects the upper respiratory system including the nasal mucosa, and consequently spreads rapidly. The starting point for the group of Giuseppe Balistreri at the University of Helsinki involved in the first study was, why did SARS-CoV-2 spread in such a different way than SARS-CoV even if they use the same main receptor ACE2?

 

To understand how these differences can be explained, the researchers looked at the viral surface proteins, the spikes that like hooks, anchor the virus to the cells. Giuseppe Balistreri's group at the University of Helsinki reveals that when the SARS-CoV-2 genome sequence became available, they were surprised to see that compared to its older relative, the new coronavirus had acquired an ‘extra piece' on its surface proteins, which is also found in the spikes of many devastating human viruses, including Ebola, HIV, and highly pathogenic strains of avian influenza, among others.

 

They found that neuropilin-1, known to bind furin-cleaved substrates significantly increases the infectivity of SARS-CoV-2. Pathological analysis of human COVID-19 autopsies revealed SARS-CoV-2 infected cells positive for neuropilin-1. The group established that the Spike protein of SARS-CoV-2 does indeed bind to neuropilin-1. The researchers were able to significantly reduce infection in laboratory cell cultures by specifically blocking neuropilin-1 with antibodies. Balistreri said, "If you think of ACE2 as a door lock to enter the cell, then neuropilin-1 could be a factor that directs the virus to the door."

 

For more details, read the article in Genetic Engineering & Biotechnology News.

Back      Print      View: 186

[ Other News ]___________________________________________________
  • Beyond genes: Protein atlas scores nitrogen fixing duet
  • 2016 Borlaug CAST Communication Award Goes to Dr. Kevin Folta
  • FAO and NEPAD team up to boost rural youth employment in Benin, Cameroon, Malawi and Niger
  • Timely seed distributions in Ethiopia boost crop yields, strengthen communities’ resilience
  • Parliaments must work together in the final stretch against hunger
  • Empowering women farmers in the polder communities of Bangladesh
  • Depression: let’s talk
  • As APEC Concludes, CIP’s Food Security and Climate Smart Agriculture on Full Display
  • CIAT directly engages with the European Cocoa Industry
  • Breeding tool plays a key role in program planning
  • FAO: Transform Agriculture to Address Global Challenges
  • Uganda Holds Banana Research Training for African Scientists and Biotechnology Regulators
  • US Congress Ratifies Historic Global Food Security Treaty
  • Fruit Fly`s Genetic Code Revealed
  • Seminar at EU Parliament Tackles GM Crops Concerns
  • JICA and IRRI ignites a “seed revolution” for African and Asian farmers
  • OsABCG26 Vital in Anther Cuticle and Pollen Exine Formation in Rice
  • Akira Tanaka, IRRI’s first physiologist, passes away
  • WHO calls for immediate safe evacuation of the sick and wounded from conflict areas
  • Farmer Field School in Tonga continues to break new ground in the Pacific for training young farmers

 

Designed & Powered by WEBSO CO.,LTD