Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  12
 Total visitors :  6052137

Scientists Discover Barley Gene Has Resistance to Different Pathogens
Monday, 2021/12/06 | 06:50:49

Figure: Barley powdery mildew and wheat stripe rust. Photo Source: The Sainsbury Laboratory


Scientists at The Sainsbury Laboratory and the Norwich Research Park have discovered that the barley and wheat gene conferring resistance to stripe rust also does the same to completely different pathogens.


The fungal pathogen stripe rust Puccinia striiformis causes major global losses in cereal crop yields, particularly wheat. The species has independent lineages that infect diverse cereal species, such as wheat stripe rust and barley stripe rust which infect wheat and barley, respectively.


In a study published in Nature Communications, the authors wrote how barley resists infection by wheat stripe rust. They found that three resistance genes Rps6Rps7, and Rps8 contributed to the immune response in barley towards the non-adapted wheat pathogen. They also found Rps7 to cosegregate with barley powdery mildew resistance at the Mla locus, meaning they are inherited together. This shows that two distinct haplotypes of Mla have coupled resistance to the adapted pathogen barley powdery mildew and the non-adapted pathogen wheat stripe rust.


For more details, read the news article on The Sainsbury Laboratory website.

Back      Print      View: 98

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use


Designed & Powered by WEBSO CO.,LTD