Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  23
 Total visitors :  7451180

Selective constraints on global plankton dispersal
Sunday, 2021/03/21 | 06:42:27

Ben A. Ward, B. B. Cael, Sinead Collins, and C. Robert Young

PNAS March 9, 2021 118 (10) e2007388118

Significance

Microscopic plankton form the ecological and biogeochemical foundation of almost all marine ecosystems. In the fluid ocean environment, biodiversity and community structure are determined by the poorly constrained balance of local selection and global dispersal. While ocean currents have the capacity to rapidly connect distant locations, we use numerical simulations to show that extremely high rates of adaptation are required for populations to traverse large-scale gradients in environmental variables such as temperature. Changing the assumed balance of selection, adaptation, and dispersal in our simulations has pronounced effects on the simulated community structure, accounting for emergent patterns in the global ocean microbiome and emphasizing the importance of evolutionary history in global marine biodiversity and biogeography.

Abstract

Marine microbial communities are highly interconnected assemblages of organisms shaped by ecological drift, natural selection, and dispersal. The relative strength of these forces determines how ecosystems respond to environmental gradients, how much diversity is resident in a community or population at any given time, and how populations reorganize and evolve in response to environmental perturbations. In this study, we introduce a globally resolved population–genetic ocean model in order to examine the interplay of dispersal, selection, and adaptive evolution and their effects on community assembly and global biogeography. We find that environmental selection places strong constraints on global dispersal, even in the face of extremely high assumed rates of adaptation. Changing the relative strengths of dispersal, selection, and adaptation has pronounced effects on community assembly in the model and suggests that barriers to dispersal play a key role in the structuring of marine communities, enhancing global biodiversity and the importance of local historical contingencies.

 

See: https://www.pnas.org/content/118/10/e2007388118

 

Figure 1: Taxonomic community similarity clusters in the 0.22- to 3-μm size fraction across Tara Oceans sites (replotted using data from ref. 9). (A) Community similarity is shown with colors by projecting the Taxonomic Jaccard dissimilarity matrix into the “rgb” (red-green-blue) color space using the t-SNE (t-distributed stochastic neighbour embedding) dimension-reduction algorithm (10). (B) Links between community similarity clusters (dimensionless x and y coordinates) and spatial location (colors corresponding to ocean basins). SI Appendix, Fig. S1 has an interpretation of B.

Back      Print      View: 198

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD