Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  4661510

Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality
Tuesday, 2013/04/23 | 06:46:26

New Phytol. 2013 Feb;197(3):825-37.

 

Shi W, Muthurajan R, Rahman H, Selvam J, Peng S, Zou Y, Jagadish KS.

 

Hunan Agricultural University

 

Abstract

 

High night temperatures (HNTs) can reduce significantly the global rice (Oryza sativa) yield and quality. A systematic analysis of HNT response at the physiological and molecular levels was performed under field conditions. Contrasting rice accessions, N22 (highly tolerant) and Gharib (susceptible), were evaluated at 22°C (control) and 28°C (HNT). Nitrogen (N) and nonstructural carbohydrate (NSC) translocation from different plant tissues into grains at key developmental stages, and their contribution to yield, grain-filling dynamics and quality aspects, were evaluated. Proteomic profiling of flag leaf and spikelets at 100% flowering and 12 d after flowering was conducted, and their reprogramming patterns were explored. Grain yield reduction in susceptible Gharib was traced back to the significant reduction in N and NSC translocation after flowering, resulting in reduced maximum and mean grain-filling rate, grain weight and grain quality. A combined increase in heat shock proteins (HSPs), Ca signaling proteins and efficient protein modification and repair mechanisms (particularly at the early grain-filling stage) enhanced N22 tolerance for HNT. The increased rate of grain filling and efficient proteomic protection, fueled by better assimilate translocation, overcome HNT tolerance in rice. Temporal and spatial proteome programming alters dynamically between key developmental stages and guides future transgenic and molecular analysis targeted towards crop improvement.

Back      Print      View: 956

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD