Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  5
 Total visitors :  5845069

Stability of Transgene Inheritance in Progeny of Field-Grown Pear Trees over a 7-Year Period
Thursday, 2022/01/20 | 07:01:28

Vadim Lebedev

Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Moscow Region, Russia

Academic Editors: Radu E. Sestras, Jaime Prohens, Adriana F. Sestras and Mariola Plazas

Plants 202211(2), 151; Published: 6 January 2022


Breeding woody plants is a very time-consuming process, and genetic engineering tools have been used to shorten the juvenile phase. In addition, transgenic trees for commercial cultivation can also be used in classical breeding, but the segregation of transgenes in the progeny of perennial plants, as well as the possible appearance of unintended changes, have been poorly investigated. We studied the inheritance of the uidA gene in the progeny of field-grown transgenic pear trees for 7 years and the physical and physiological parameters of transgenic seeds. A total of 13 transgenic lines were analyzed, and the uidA gene segregated 1:1 in the progeny of 9 lines and 3:1 in the progeny of 4 lines, which is consistent with Mendelian inheritance for one and two transgene loci, respectively. Rare and random deviations from the Mendelian ratio were observed only for lines with one locus. Transgenic seeds’ mass, size, and shape varied slightly, despite significant fluctuations in weather conditions during cultivation. Expression of the uidA gene in the progeny was stable. Our study showed that the transgene inheritance in the progeny of pear trees under field conditions occurs according to Mendelian ratio, does not depend on the environment, and the seed vigor of transgenic seeds does not change.


See https://www.mdpi.com/2223-7747/11/2/151/htm


Figure 5. Segregation of GUS activity in pear progeny: (a) non-transgenic control; (b) ratio 1:1; (c) ratio 3:1.

Back      Print      View: 68

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD