Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  7445329

Steady agronomic and genetic interventions are essential for sustaining productivity in intensive rice cropping
Thursday, 2021/11/18 | 10:05:53

Jagdish K. Ladha, Ando M. Radanielson, Jessica Elaine Rutkoski, Roland J. Buresh, Achim Dobermann, Olivyn Angeles, Irish Lorraine B. Pabuayon, Christian Santos-Medellín, Roberto Fritsche-Neto, Pauline Chivenge, and Ajay Kohli

 

PNAS November 9, 2021 118 (45) e2110807118

Significance

Steady agronomic and genetic interventions helped sustain high annual rice production in an intensive irrigated monoculture system under a changing climate. However, the system did not achieve the increases in yield required to keep pace with the growing global demand for rice because annual yield potential was stagnant, and apparent biotic constraints limited yield in the wet season.

Abstract

Intensive systems with two or three rice (Oryza sativa L.) crops per year account for about 50% of the harvested area for irrigated rice in Asia. Any reduction in productivity or sustainability of these systems has serious implications for global food security. Rice yield trends in the world’s longest-running long-term continuous cropping experiment (LTCCE) were evaluated to investigate consequences of intensive cropping and to draw lessons for sustaining production in Asia. Annual production was sustained at a steady level over the 50-y period in the LTCCE through continuous adjustment of management practices and regular cultivar replacement. Within each of the three annual cropping seasons (dry, early wet, and late wet), yield decline was observed during the first phase, from 1968 to 1990. Agronomic improvements in 1991 to 1995 helped to reverse this yield decline, but yield increases did not continue thereafter from 1996 to 2017. Regular genetic and agronomic improvements were sufficient to maintain yields at steady levels in dry and early wet seasons despite a reduction in the yield potential due to changing climate. Yield declines resumed in the late wet season. Slower growth in genetic gain after the first 20 y was associated with slower breeding cycle advancement as indicated by pedigree depth. Our findings demonstrate that through adjustment of management practices and regular cultivar replacement, it is possible to sustain a high level of annual production in irrigated systems under a changing climate. However, the system was unable to achieve further increases in yield required to keep pace with the growing global rice demand.

 

See https://www.pnas.org/content/118/45/e2110807118

Fig. 1.

Annual rice production (observed and potential) in the LTCCE over the period from 1968 to 2017 and average production gap from 1968 to 2017. Annual production potential was computed as the sum of climatic yield potential simulated for DS, EWS, and LWS for each year averaged across three cultivars. Observed annual production was computed as the sum of observed yield for DS, EWS, and LWS for each year averaged across the cultivars and the two highest fertilizer-N levels used in the LTCCE. The annual production gap is the difference between the annual production potential and the observed production expressed in % of the annual production potential. Slopes of linear regression of potential and observed annual production with years during the phase 1 period (1968 to 1990) and during phase 2 (1996 to 2017) are presented with level of significance labeled as *** (P < 0.001) or ns (nonsignificant). In 1985, the observed yield for LWS was excluded in the total annual production because the crop was damaged by a typhoon.

Back      Print      View: 192

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD