Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  6
 Total visitors :  5188305

Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control
Monday, 2020/10/19 | 11:10:51

Yue Guo, Li ChengWeihua LongJianqin GaoJiefu ZhangSong ChenHuiming Pu & Maolong Hu

Theoretical and Applied Genetics October 2020; vol. 133:2811–2824.


Key message

A double mutant 5N of rapeseed was obtained with a synergistic effect of high resistance to sulfonylurea herbicide. Excellent weed control was observed in Ning R201 created by 5N resources.


Sulfonylurea herbicides, which inhibit acetohydroxyacid synthase (AHAS), have become the most widely used herbicides worldwide. However, weed control in rapeseed crop production remains challenging in China due to the shortage of available herbicide-resistant cultivars. In this study, we developed a rapeseed line (PN19) with sulfonylurea herbicide resistance through seed mutagenesis. Molecular analysis revealed a Trp-574-Leu mutation in BnAHAS1-2R of PN19 according to the sequence of Arabidopsis thaliana, and an allele-specific cleaved amplified polymorphic sequence marker was developed to target the point mutation. A double mutant (5N) with very high sulfonylurea resistance was then created through pyramiding two mutant genes of PN19 and M342 by molecular marker-assisted selection. Herbicide resistance identification, toxicology testing, and an in vitro enzyme activity assay of AHAS in 5N indicated that each mutant was four and eight times more resistant to sulfonylurea than M342 and PN19, respectively. Protein structure analysis of AHAS1 demonstrated that the leucine of mutant Trp-574-Leu destroyed the original π-plane stacking effect of the local region for tribenuron-methyl binding, leading to herbicide tolerance. Isobole graph analysis showed a significant synergistic effect of the combination of two mutant genes in 5N for improved tolerance to sulfonylurea herbicides. Finally, we bred rapeseed variety Ning R201 using 5N herbicide resistance resources, and observed excellent weed control performance. Together, these results demonstrate the practical value of 5N application for optimizing and simplifying rapeseed cultivation in China.


See: https://link.springer.com/article/10.1007/s00122-020-03633-w

Back      Print      View: 78

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD