Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  7434572

TALEN Beats CRISPR-Cas9 in Editing Tightly-packed DNA
Sunday, 2021/02/14 | 08:48:36

Description:

 

CHAMPAIGN, Ill. — Researchers used single-molecule imaging to compare the genome-editing tools CRISPR-Cas9 and TALEN. Their experiments revealed that TALEN is up to five times more efficient than CRISPR-Cas9 in parts of the genome, called heterochromatin, that are densely packed. Fragile X syndrome, sickle cell anemia, beta-thalassemia and other diseases are the result of genetic defects in the heterochromatin.

 

The researchers report their findings in the journal Nature Communications.

 

The study adds to the evidence that a broader selection of genome-editing tools is needed to target all parts of the genome, said Huimin Zhao, a professor of chemical and biomolecular engineering at the University of Illinois Urbana-Champaign who led the new research.

 

“CRISPR is a very powerful tool that led to a revolution in genetic engineering,” Zhao said. “But it still has some limitations.”

 

CRISPR is a bacterial molecule that detects invading viruses. It can carry one of several enzymes, such as Cas-9, that allow it to cut viral genomes at specific sites. TALEN also scans DNA to find and target specific genes. Both CRISPR and TALEN can be engineered to target specific genes to fight disease, improve crop plant characteristics or for other applications.

 

Zhao and his colleagues used single-molecule fluorescence microscopy to directly observe how the two genome-editing tools performed in living mammalian cells. Fluorescent-labeled tags enabled the researchers to measure how long it took CRISPR and TALEN to move along the DNA and to detect and cut target sites.

 

“We found that CRISPR works better in the less-tightly wound regions of the genome, but TALEN can access those genes in the heterochromatin region better than CRISPR,” Zhao said. “We also saw that TALEN can have higher editing efficiency than CRISPR. It can cut the DNA and then make changes more efficiently than CRISPR.”

 

TALEN was as much as five times more efficient than CRISPR in multiple experiments.

 

The findings will lead to improved approaches for targeting various parts of the genome, Zhao said.

 

“Either we can use TALEN for certain applications, or we could try to make CRISPR work better in the heterochromatin,” he said.

 

The National Institutes of Health and National Science Foundation support this work.

 

Zhao is a member of the Carl R. Woese Institute for Genomic Biology at the U. of I.

 

https://news.illinois.edu/view/6367/1885424885

Back      Print      View: 220

[ Other News ]___________________________________________________
  • Beyond genes: Protein atlas scores nitrogen fixing duet
  • 2016 Borlaug CAST Communication Award Goes to Dr. Kevin Folta
  • FAO and NEPAD team up to boost rural youth employment in Benin, Cameroon, Malawi and Niger
  • Timely seed distributions in Ethiopia boost crop yields, strengthen communities’ resilience
  • Parliaments must work together in the final stretch against hunger
  • Empowering women farmers in the polder communities of Bangladesh
  • Depression: let’s talk
  • As APEC Concludes, CIP’s Food Security and Climate Smart Agriculture on Full Display
  • CIAT directly engages with the European Cocoa Industry
  • Breeding tool plays a key role in program planning
  • FAO: Transform Agriculture to Address Global Challenges
  • Uganda Holds Banana Research Training for African Scientists and Biotechnology Regulators
  • US Congress Ratifies Historic Global Food Security Treaty
  • Fruit Fly`s Genetic Code Revealed
  • Seminar at EU Parliament Tackles GM Crops Concerns
  • JICA and IRRI ignites a “seed revolution” for African and Asian farmers
  • OsABCG26 Vital in Anther Cuticle and Pollen Exine Formation in Rice
  • Akira Tanaka, IRRI’s first physiologist, passes away
  • WHO calls for immediate safe evacuation of the sick and wounded from conflict areas
  • Farmer Field School in Tonga continues to break new ground in the Pacific for training young farmers

 

Designed & Powered by WEBSO CO.,LTD