Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  1
 Total visitors :  4559646

The 21st Century Agriculture: When Rice Research Draws Attention to Climate Variability and How Weedy Rice and Underutilized Grains Come in Handy
Thursday, 2020/07/09 | 08:24:31

Noraikim Mohd Hanafiah, Muhamad Shakirin Mispan, Phaik Eem Lim, Niranjan Baisakh, Acga Cheng

Plant (Basel) 2020 Mar 16;9(3):365.  doi: 10.3390/plants9030365.

Abstract

Rice, the first crop to be fully sequenced and annotated in the mid-2000s, is an excellent model species for crop research due mainly to its relatively small genome and rich genetic diversity. The 130-million-year-old cereal came into the limelight in the 1960s when the semi-dwarfing gene sd-1, better known as the "green revolution" gene, resulted in the establishment of a high-yielding semi-dwarf variety IR8. Deemed as the miracle rice, IR8 saved millions of lives and revolutionized irrigated rice farming particularly in the tropics. The technology, however, spurred some unintended negative consequences, especially in prompting ubiquitous monoculture systems that increase agricultural vulnerability to extreme weather events and climate variability. One feasible way to incorporate resilience in modern rice varieties with narrow genetic backgrounds is by introgressing alleles from the germplasm of its weedy and wild relatives, or perhaps from the suitable underutilized species that harbor novel genes responsive to various biotic and abiotic stresses. This review reminisces the fascinating half-century journey of rice research and highlights the potential utilization of weedy rice and underutilized grains in modern breeding programs. Other possible alternatives to improve the sustainability of crop production systems in a changing climate are also discussed.

 

See https://pubmed.ncbi.nlm.nih.gov/32188108/

Back      Print      View: 22

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD