Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7358006

The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields
Monday, 2022/09/12 | 08:29:25

Huiyuan XuHan SunJiajin DongChengxue MaJingxue LiZhuochun LiYihuan WangJunqi JiXinrong HuMeihui WuChunhua ZhaoRan QinJiajie WuFei NiFa Cui & Yongzhen Wu 

Key message

TaD11-2A affects grain size and root length and its natural variations are associated with significant differences in yield-related traits in wheat.

Abstract

Brassinosteroids (BRs) control many important agronomic traits and therefore the manipulation of BR components could improve crop productivity and performance. However, the potential effects of BR-related genes on yield-related traits and stress tolerance in wheat (Triticum aestivum L.) remain poorly understood. Here, we identified TaD11 genes in wheat (rice D11 orthologs) that encoded enzymes involved in BR biosynthesis. TaD11 genes were highly expressed in roots (Zadoks scale: Z11) and grains (Z75), while expression was significantly suppressed by exogenous BR (24-epiBL). Ectopic expression of TaD11-2A rescued the abnormal panicle structure and plant height (PH) of the clustered primary branch 1 (cpb1) mutant, and also increased endogenous BR levels, resulting in improved grain yields and grain quality in rice. The tad11-2a-1 mutant displayed dwarfism, smaller grains, sensitivity to 24-epiBL, and reduced endogenous BR contents. Natural variations in TaD11-2A were associated with significant differences in yield-related traits, including PH, grain width, 1000-grain weight, and grain yield per plant, and its favorable haplotype, TaD11-2A-HapI was subjected to positive selection during wheat breeding. Additionally, TaD11-2A influenced root length and salt tolerance in rice and wheat at seedling stages. These results indicated the important role of BR TaD11 biosynthetic genes in controlling grain size and root length, and also highlighted their potential in the molecular biological analysis of wheat.

 

See https://link.springer.com/article/10.1007/s00122-022-04158-0

Back      Print      View: 148

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD