Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  16
 Total visitors :  7450210

Unraveling the genetics of tomato fruit weight during crop domestication and diversification
Tuesday, 2021/10/05 | 08:26:34

Lara PereiraLei ZhangManoj SapkotaAlexis RamosHamid RazifardAna L. Caicedo & Esther van der Knaap

Theoretical and Applied Genetics October 2021; vol. 134: 3363–3378

Key Message

Six novel fruit weight QTLs were identified in tomato using multiple bi-parental populations developed from ancestral accessions. Beneficial alleles at these loci arose in semi-domesticated subpopulations and were likely left behind. This study paves the way to introgress these alleles into breeding programs.

Abstract

The size and weight of edible organs have been strongly selected during crop domestication. Concurrently, human have also focused on nutritional and cultural characteristics of fruits and vegetables, at times countering selective pressures on beneficial size and weight alleles. Therefore, it is likely that novel improvement alleles for organ weight still segregate in ancestral germplasm. To date, five domestication and diversification genes affecting tomato fruit weight have been identified, yet the genetic basis for increases in weight has not been fully accounted for. We found that fruit weight increased gradually during domestication and diversification, and semi-domesticated subpopulations featured high phenotypic and nucleotide diversity. Columella and septum fruit tissues were proportionally increased, suggesting targeted selection. We developed twenty-one F2 populations with parents fixed for the known fruit weight genes, corresponding to putative key transitions from wild to fully domesticated tomatoes. These parents also showed differences in fruit weight attributes as well as the developmental timing of size increase. A subset of populations was targeted for QTL-seq, leading to the identification of six uncloned fruit weight QTLs. Three QTLs, located on chromosomes 1, 2 and 3, were subsequently validated by progeny testing. By exploring the segregation of the known fruit weight genes and the identified QTLs, we estimated that most beneficial alleles in the newly identified loci arose in semi-domesticated subpopulations from South America and were not likely transmitted to fully domesticated landraces. Therefore, these alleles could be incorporated into breeding programs using the germplasm and genetic resources identified in this study.

 

See: https://link.springer.com/article/10.1007/s00122-021-03902-2

 

Figure 1: A. Phylogenetic tree using genome-wide fourfold-degenerate SNPs after quality filtering. Population group is represented by color and indicated at each accession. Population delimitation of three accessions (*) was manually corrected according to their physical traits and previous phylogenetic study (Razifard et al, 2020). Accessions representing diversity of SP and SLC populations (red dot at tree tip) were selected for in-depth fruit phenotyping. B. Nucleotide diversity in each population, estimated based on π and Watterson's θ in 100-kb genomic windows.

Back      Print      View: 188

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD