Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  15
 Total visitors :  4972171

Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture
Monday, 2021/01/25 | 08:41:18

Xiaoyi WangRenbo Yu and Jingyang Li

Front. Plant Sci., 13 January 2021 | https://doi.org/10.3389/fpls.2020.617528


Bananas (Musa spp.) are an important fruit crop worldwide. The fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt, is widely regarded as one of the most damaging plant diseases. Fusarium wilt has previously devastated global banana production and continues to do so today. In addition, due to the current use of high-density banana plantations, desirable banana varieties with ideal plant architecture (IPA) possess high lodging resistance, optimum photosynthesis, and efficient water absorption. These properties may help to increase banana production. Genetic engineering is useful for the development of banana varieties with Foc resistance and ideal plant architecture due to the sterility of most cultivars. However, the sustained immune response brought about by genetic engineering is always accompanied by yield reductions. To resolve this problem, we should perform functional genetic studies of the Musa genome, in conjunction with genome editing experiments, to unravel the molecular mechanisms underlying the immune response and the formation of plant architecture in the banana. Further explorations of the genes associated with Foc resistance and ideal architecture might lead to the development of banana varieties with both ideal architecture and pathogen super-resistance. Such varieties will help the banana to remain a staple food worldwide.


See https://www.frontiersin.org/articles/10.3389/fpls.2020.617528/full

Back      Print      View: 37

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD