Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  6143920

Wheat glutamine synthetase TaGSr-4B is a candidate gene for a QTL of thousand grain weight on chromosome 4B
Wednesday, 2022/07/20 | 08:04:34

Fan YangJingjuan ZhangYun ZhaoQier LiuShahidul IslamWuyun Yang & Wujun Ma

Theoretical and Applied Genetics July 2022; vol. 135: 2369–2384

Key message

Glutamine synthetase TaGSr-4B is a candidate gene for a QTL of thousand grain weight on 4B, and the gene marker is ready for wheat breeding.


A QTL for thousand grain weight (TGW) in wheat was previously mapped on chromosome 4B in a DH population of Westonia × Kauz. For identifying the candidate genes of the QTL, wheat 90 K SNP array was used to saturate the existing linkage map, and four field trials plus one glasshouse experiment over five locations were conducted to refine the QTL. Three nitrogen levels were applied to two of those field trials, resulting in a TGW phenotype data set from nine environments. A robust TGW QTL cluster including 773 genes was detected in six environments with the highest LOD value of 13.4. Based on differentiate gene expression within the QTL cluster in an RNAseq data of Westonia and Kauz during grain filling, a glutamine synthesis gene (GSTaGSr-4B) was selected as a potential candidate gene for the QTL. A SNP on the promoter region between Westonia and Kauz was used to develop a cleaved amplified polymorphic marker for TaGSr-4B gene mapping and QTL reanalysing. As results, TGW QTL appeared in seven environments, and in four out of seven environments, the TGW QTL were localized on the TaGSr-4B locus and showed significant contributions to the phenotype. Based on the marker, two allele groups of Westonia and Kauz formed showed significant differences on TGW in eight environments. In agreement with the roles of GS genes on nitrogen and carbon remobilizations, TaGSr-4B is likely the candidate gene of the TGW QTL on 4B and the TaGSr-4B gene marker is ready for wheat breeding.


See https://link.springer.com/article/10.1007/s00122-022-04118-8


Figure 1: The distribution of thousand grain weight (TGW) in the DH population of Westonia and Kauz in nine environments. GH: glasshouse in 2010; Ka: Katanning in 2010; SH: Shenton Park in 2011; SH0, SH50, SH100: Nitrogen (N) level 0, 50 and 100 kg/ha in Shenton Park in 2016; WH0, WH50, WH100: N level 0, 50 and 100 kg/ha in Wongan Hills in 2016


Back      Print      View: 52

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD