Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  7331017

Zinc biofortification strategies for wheat grown on calcareous Vertisols in southern Spain: application method and rate
Monday, 2021/04/19 | 08:33:54

Antonio Rafael Sánchez-RodríguezMaría Marín-ParedesAdrián González-GuzmánJosé María MéndezMónica Sánchez-ParraDaniel SacristánMariano Fuentes-GarcíaVidal BarrónJosé Torrent & María Carmen del Campillo

Plant and Soil (2021); on-line February 3, 2021

Purpose

The aims of this work were (i) to find a soil indicator to predict durum wheat yield response to Zn fertilization, (ii) to compare the effect of various Zn fertilization strategies on wheat yield and Zn biofortification in calcareous Vertisols of southern Spain, and (iii) to assess the effect of these Zn fertilization strategies on crop P uptake (durum and bread wheat).

Methods

Different Zn fertilization strategies, soil application (0.3–10 kg ha−1) and foliar spraying (two rates, different growth stages), were tested in wheat crops under field conditions in the period 2012–2019.

Results

A simple soil indicator failed to predict durum wheat response to Zn fertilization. Only one of the combinations tested increased wheat yield in the 11 field experiments carried out. Zinc foliar spraying (1.28 kg ha−1) was effective for wheat biofortification when applied at early booting (durum wheat) or flowering, and also when splitting this application between stem elongation and flowering stages (bread wheat). The foliar treatments produced the highest zinc use efficiencies (6–19%) and soil applications the lowest (0.2–1.3%). Moreover, foliar treatments increased grain Zn concentrations by 12–51% while soil application increased such concentrations by only 4–13%. None of the Zn fertilization strategies altered P uptake.

Conclusion

No yield increase in wheat is expected from Zn fertilization for the application methods and rates used here and the soils studied (calcareous Vertisols under Mediterranean climate). However, foliar applications at and after early booting stage are promising for durum and bread wheat biofortification.

 

See: https://link.springer.com/article/10.1007/s11104-021-04863-7

Back      Print      View: 184

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD