Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  4777815

Deep learning for plant genomics and crop improvement

Our era has witnessed tremendous advances in plant genomics, characterized by an explosion of high-throughput techniques to identify multi-dimensional genome-wide molecular phenotypes at low costs. More importantly, genomics is not merely acquiring molecular phenotypes, but also leveraging powerful data mining tools to predict and explain them. In recent years, deep learning has been found extremely effective in these tasks.

Hai WangEmre CimenNisha SinghEdward Buckler

Curr. Opin. Plant Biol. 2020 Apr; 54:34-41.

Abstract

Our era has witnessed tremendous advances in plant genomics, characterized by an explosion of high-throughput techniques to identify multi-dimensional genome-wide molecular phenotypes at low costs. More importantly, genomics is not merely acquiring molecular phenotypes, but also leveraging powerful data mining tools to predict and explain them. In recent years, deep learning has been found extremely effective in these tasks. This review highlights two prominent questions at the intersection of genomics and deep learning: 1) how can the flow of information from genomic DNA sequences to molecular phenotypes be modeled; 2) how can we identify functional variants in natural populations using deep learning models? Additionally, we discuss the possibility of unleashing the power of deep learning in synthetic biology to create novel genomic elements with desirable functions. Taken together, we propose a central role of deep learning in future plant genomics research and crop genetic improvement.

 

See https://pubmed.ncbi.nlm.nih.gov/31986354/

 

Figure 2: Application of deep learning models on sequence variants.

Trở lại      In      Số lần xem: 43

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD