Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  2
 Total visitors :  5926211

Fine mapping and candidate gene analysis of qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice

Grain size and grain number are two factors that directly determine rice grain yield; however, the underlying genetic mechanisms are complicated and remain largely unclear. In this study, a chromosome segment substitution line (CSSL), CSSL28, which showed increased grain size and decreased grain number per panicle, was identified in a set of CSSLs derived from a cross between 93-11 (recipient) and Nipponbare (donor). Four substitution segments were identified in CSSL28, and the substitution segment located on chromosome 5 was responsible for the phenotypes of CSSL28.

Hua YuanPeng GaoXiaoling HuMin YuanZhengyan XuMengya JinWencheng SongShijie ZhanXiaobo ZhuBin TuTing LiYuping WangBingtian MaPeng QinWeilan Chen & Shigui Li

Theoretical and Applied Genetics January 2021; vol. 135: pages 51–64 

Key message

qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice, was fine-mapped to an 85.60-kb region. GS3 may be a suppressor of qGSN5.

Abstract

Grain size and grain number are two factors that directly determine rice grain yield; however, the underlying genetic mechanisms are complicated and remain largely unclear. In this study, a chromosome segment substitution line (CSSL), CSSL28, which showed increased grain size and decreased grain number per panicle, was identified in a set of CSSLs derived from a cross between 93-11 (recipient) and Nipponbare (donor). Four substitution segments were identified in CSSL28, and the substitution segment located on chromosome 5 was responsible for the phenotypes of CSSL28. Thus, we defined this quantitative trait locus (QTL) as grain size and grain number 5 (qGSN5). Cytological and quantitative PCR analysis showed that qGSN5 regulates the development of the spikelet hull by affecting cell proliferation. Genetic analysis showed that qGSN5 is a semi-dominant locus regulating grain size and grain number. Through map-based cloning and overlapping substitution segment analysis, qGSN5 was finally delimited to an 85.60-kb region. Based on sequence and quantitative PCR analysis, Os05g47510, which encodes a P-type pentatricopeptide repeat protein, is the most likely candidate gene for qGSN5. Pyramiding analysis showed that the effect of qGSN5 was significantly lower in the presence of a functional GS3 gene, indicating that GS3 may be a suppressor of qGSN5. In addition, we found that qGSN5 could improve the grain shape of hybrid rice. Together, our results lay the foundation for cloning a novel QTL coordinating grain size and grain number in rice and provide a good genetic material for long-grain hybrid rice breeding.

 

See https://link.springer.com/article/10.1007/s00122-021-03951-7

Trở lại      In      Số lần xem: 82

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD